Department of Mathematical

Submission deadline: 10th September

The first two exercises are based on the following;
https://wiki.math.ntnu.no/_media/tma4135/2019h/preliminaries.pdf

1 Use $e^{i \pi / 2}=i$ to compute $\cos (n \pi / 2)$ and $\sin (n \pi / 2), n=0,1, \cdots$.
Hint: consider n-th power of $e^{i \pi / 2}=i$, apply the Euler formula; then assume that $n=2 k, 2 k+1$.

2 Compute

$$
\int_{-\pi}^{\pi} x e^{i n x} d x, \quad n=0,1, \cdots
$$

Hint: $n=0$ is easy; for $n \neq 0$ use $e^{i n x}=\left(\frac{e^{i n x}}{i n}\right)^{\prime}$ and do integration by parts.

3 Compute the Laplace transforms of the following functions defined on $[0, \infty)$:
a) $f(t)=\sinh (A t), A$ is a constant;
b) $f(t)=\cosh (A t), A$ is a constant;
c)

$$
f(t)= \begin{cases}0 & \text { if } 0<t<\pi \\ 1 & \text { if } t \geq \pi\end{cases}
$$

d)

$$
f(t)= \begin{cases}0 & \text { if } 0<t<\pi \\ \cos t & \text { if } t \geq \pi ;\end{cases}
$$

e) $f(t)=t^{2} e^{t}$;
f) $f(t)=e^{t} \cos t$;
g) $f(t)=e^{t} \sin t$.

4 Solve the following initial value problems using Laplace transforms:
a)

$$
\left\{\begin{array}{l}
y^{\prime \prime}-2 y^{\prime}+2 y=6 e^{-t} \\
y(0)=0, y^{\prime}(0)=1
\end{array}\right.
$$

Hint: You may use partical fraction decomposition of the following form: find A, B, C such that

$$
\frac{A s+B}{s^{2}-2 s+2}+\frac{C}{s+1}=\frac{s+7}{\left(s^{2}-2 s+2\right)(s+1)}
$$

then use Exercise [3] f), g).
b)

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=f(t) \\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

where

$$
f(t)= \begin{cases}0 & \text { if } 0<t<\pi \\ 1 & \text { if } t \geq \pi\end{cases}
$$

Hint: Find A, B, C such that

$$
\frac{A s+B}{s^{2}+1}+\frac{C}{s}=\frac{1}{\left(s^{2}+1\right) s}
$$

then use Exercise [3] c), d).

Remark: In the first lecture, we mentioned how to find the inverse Laplace transform of a polynomial, but in real applications this can never happen, in fact the Laplace transform

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

will go to zero when s goes to infinity. Thus if F is a polynomial of s then $F \equiv 0$.

