1. INTRODUCTION

These are lecture notes on Laplace transform, Fourier transform and their applications by Xu Wang
based on Erwin Kreyszig’s book Advanced engineering mathematics (10th edition), Dag Wessel-
Berg’s video: http://video.adm.ntnu.no/serier/4fe2d4d3dbe03 and references [1, 3, 4].
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2. WHAT IS e ?

Au = Au,

where A is a constant in C.
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Assume that
u(z) = ag + a1x + asx® + -+ apz" + - .
The following lemma gives:
u'(z) = ay 4 2a9 + - - + na" + (n 4+ Va2 + -
Lemma 2.1. (") =na" !, n=1,2,---.
Proof. If n =1 then

#'(z) = lim (z+bz) -z

=1.
Az—0 ANz

Assume the Lemma forn =1,--- , N — 1. Then (fg)’ = f'g + f¢ gives
(V) =@V Y 42N = (N —1D)aVN 2 4 2N = NNV
The proof is complete.

Exercise: Why we have (fg) = f'g + fg' ?

Now
v = s Ma, =+ 1api, n=0,1,---.
Thus
" _ Aay, _ Aa,_1 o A tlag _ A Hlag
T 1) (n+ Dn (n+Dn---1  (n+1)

where we define
nl=1-2---n.

Then we have

Ax)"
u(m):uo-(1+)\x+-'~—|—(n') +-00)
Put
n
E(@)=1+z+ - +—+
n!
Since for every C' > 0,
n
lim C—ZO,
n—oo n!

we know that F(x) converges for all z € C.

Theorem 2.2. E(\x) is a unique solution of the eigenvalue equation
u = \u,

with initail condition u(0) = 1.

Definition 2.3. We shall define

1
e::E(l):1+1+7+...+n



3. EXPONENTIAL FUNCTION

Let us write

and define "™ inductively by

n+1 —en.

e €.

Since e is positive, we can take the ¢ — th roof of ", we write it as ea . Thus for every x € Q, e” is
well defined. The following lemma tells us that F(z) is an extension of e* from Q to C.
Lemma 3.1. For every x € Q, we have e* = E(x).

Proof. Since E(1) = e, it suffices to prove
@ EOMEO2) = E( + M),
for every A1, A2 in C. Notice that
(E(\Mx)E(\2z)) = E(AMz) E(\2x) + E(M2x) E(M\11).

Put

G(z) = E(Aix)E(Aax).
Apply E(Az) = AE(A\z), we get

G = (A1 + A2)G.

Notice that G(0) = 1. Thus Theorem 2.2 implies that

G(z) = E((M1 + \2)z).
Take x = 1, we get E(\1)E(A\2) = E(A\ + A2). O

Exercise: Find a direct proof of E(A1)E(A2) = E(A1 + A2) without using Theorem 2.2.

Definition 3.2. We shall use the same symbol e to denote E(x) for all x in C and call €* the

exponential function. If x > 0 then we define In  as the unique real solution of €™* = x.

By Theorem 2.2, we know that e” is fully determined by

(e®) =e”, ¥ =1.

Jordan normal form of the derivative (this part is not assumed in the course) In linear algebra,
we know that if A : C"™ — C" is not diagonalizable then we need to find u such that
(A=XN)"u =0,
for some positive integer m. In our case, if A = 0 then
dzn =0
if and only if u is polynomial of degree m — 1. In general, one may check that
d
— —A)"u =0,
(g —N"u

A% is a polynomial of degree m — 1. In linear algebra, we hope to write

if and only if u(z)e™
U = ajuy + -+ + agug,

where u;, satisfies
(A - )\k)mkuk =0.
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In case A is the derivative, then it suggests to write a function u as a

u(x):/e)‘xao()\)+:U-/e’\xa1()\)+-"+xk-/e“ak()\)—k---,

where each a;(\) is a measure in C. If we only consider real A then we call

Fs)= [ et

0
the Laplace transform of f. In general, we call

flw) := \/12? /_Z e W f(v)du, 7= /—1,
the Fourier transform of f.
Recall definition of 7 and trigonometric functions: Fix Py = (1,0) in the unit circle
Sti={(z,y) eR? : 2% +¢* =1}

A counterclockwise rotation of Py gives a arc Py P. The length, say 6(P), of the arc Py P is a function
of P. It is clear that the circumference diameter ratio is equal to 6(—1,0).

Definition 3.3 (Definition of 7). We shall write the circumference diameter ratio as .

Denote by
F:0(P) s P,
the inverse function of 0 < §(P) < 2.
Definition 3.4. We shall write F'(6) = (cos6,sinf).

Notice that
F(0)=(1,0) = F(2n), F(m) = (—1,0), |F(0)| = 1.
In particular, it gives
sin(0) = sin(27) = 0, cos(0) = cos(27) = 1.
By definition of 6, we have

which gives

Now F'(6) - F(#) = 1 implies
F.F4+F-F' =2F -F =0.
Hence F' 1 F, thus we know that
F'(9) = (—sinf,cosf), or F'(§) = (sin 6, — cos ).
But notice that F’(0) = (0, 1), thus we must have
F'(0) = (—sinf,cosb),
which is equivalent to
(cosf +isinf) = i(cosf +isin).
Notice that cos 0 + ¢ sin 0 = 1, thus Theorem 2.2 gives

Theorem 3.5 (Euler’s formula). ¢’ = cos + isin .



Take 8 = 7, we get the following Euler’s identity
e = —1.

Moreover, apply (2), we get
ei91 ei@g — ei(91+92)’

thus by Euler’s formula, we have

(cos 01 +isinfy)(cos by + isinby) = cos(01 + 02) + isin(f; + 62),

i.e.
3) cos(01 + 62) = cos B cos By — sin 0 sin O,
and
4 sin(61 + 62) = sin 6y cos Oy + cos 01 sin O5.

4. LAPLACE TRANSFORM, BASIC FACTS
Definition 4.1. Let f(t),t > 0 be a given function. We call

F(s):= /OO e StE(t) dt,

0
the Laplace transform of f(t). and write

F:[’(f)v f:'c_lF-
In order to compute Laplace transforms, we need the following two fundamental formulas:
b
) d(fs) = Fdg-+odf, [ df = £0) - o).

where df := f'(t)dt.
Example: £(1): Consider

f&)=1,¢t>0
Then
0o ) —st —st —st
_ st B [ e € _
F(S)/O e -1dt/0 cl(_S)—_S|t_Oo S}t:o—o _—S—g,s>0
Thus we get
1 1,1
s s
Example: £(c*), k € R: We have
[es) oo 1
ce = et [ = L o
) 0 s—k
Thus
) L) = 0 L () =, s>k
s—k’ s—k ’
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for all real number s.
Remark: Laplace transform is linear: For every pair of real numbers a, b, we have

(8) L(af +bg) = aLl(f)+bL(g).

Example: £(3 + 2¢°!): We have

1 1 3 2 5(s —3)
L(3+2e%) =3L(1)+2L(®)=3-=+2- == ,s>5
(3+2¢7) (1) +2£(e7) s+ s—9 3+s—5 §—29 s
Compute inverse Laplace transform: £*1(m): Notice that
1 B 1 1 1
2-35+2 (s—1)(s—2) s-2 s—1
Thus
1 1 1
-1 —1 —1 2t t
—————) =L (——=)—-L =e” —e.
£ (82—38+2) (8—2) (8—1) ¢ ¢
Proposition 4.2. L(t") = Sﬁ% n=12---,8>0.
Proof. Put
Fu(s) = L(")
Then by (5), we have
00 o0 e—st 00 G_St e—st
F,(s) = / e S dt = / t"d( ) = / " ) — a(t").
0 0 —S 0 —S —S
Since
[e’e) —st
/ ac" )=0-0, if s > 0,
0 —S
and
o] efst
/ — d(t") = — - Fh—1(s).
0 —S
We get
n(n—1) n! n! n!
Fn(S) = anl(s) = 82 : Fn72(8) = = 37774 FO(S) = ey (1) = W
Remark: Recall that (") = nt" !, n = 1,2, - -, thus the above proposition gives
1 n!
L)) =nL{t" ") = — = sL(t").
s

In general, we have the following theorem
Theorem 4.3 (Laplace transform for derivative).

L(f") = sF(s) — f(0), where F(s):= L(f).
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We will prove the above theorem later, first let us show how to use it to solve first order differential
equations:
Verify Theorem 2.2: Consider
Put
Then we have
Since

we have

which gives

Thus

which verifies Theorem 2.2 for A = 1.

5. LAPLACE TRANSFORM OF DERIVATIVES: HOW TO USE IT TO SOLVE DIFFERENTIAL
EQUATIONS ?

The main theorem in Laplace transform is the following:

Theorem 5.1 (Laplace transform of the derivative).
L(f") = sL(f) = f(0).
Proof. By (5), we have

o) = [Tetra= [Testar= [Taen - [ pae

0 0
Assume that for some real number k, we have

lim e ¥ f(t) = 0.

t—00

Then for s > k, we have

/O et = Jim (D) — (0) = —(0).

— 00

Since
- [t =s [ e ar— o),
0 0
we get L(f") =sL(f) — f(0) ons > k. O



Remark 1: In the above proof, we use an extra assumption: for some k € R,
Jlim ™M f(t) =0,

in this course, we only consider functions that satisfy the above condition.

Remark 2: Apply the theorem to f’, we get

L(f") = sL(f') — £/(0) = s(sL(f) — F(0)) — £(0) = $L(f) — s£(0) — £(0).
In general, denote by f(™) the n-th order derivative of f then we have
Theorem 5.2 (Laplace transform of n-th order derivative).
L) = $"L(f) = "1 f(0) = "2 f(0) = - = s 7D(0) — F7(0).

Remark: How to use Laplace transform of derivatives to solve differential equation: By the
above theorem, if we apply the Laplace transform to a differential equation

y" +ay + by =c(t), a'beR,
then we get
s°Y — sy(0) — ¢/(0) + a(sY — y(0)) +bY = C.
Thus
(s> +as + b)Y = (s +a)y(0) +4/(0) + C,

which gives

Example: Consider
y'+ 4y +4y =0, y(0)=0,y'(0) = 1.

then the above formula gives

y==~ <32+4s+4> =L ((s+2)2>'

How to compute the inverse Laplace transform of @ ? Is it related to 571(5%) =t 7?7 We will
introduce a simple method to answer these two questions.

6. s—SHIFTING: REPLACING s BY s — a IN THE TRANSFORM

Notice that

[T e a= -, o~ ) = [T et

0

thus we get the following theorem:
Theorem 6.1 (s-Shifting theorem).
L(e™f(t)) = F(s —a), LT(F(s —a)) = e"L7(F(s)).



Compute L' (@) In this case

1
(s+2)%
thus a = —2. Since ,C_l(S%) = t, apply the above theorem, we get

_ 1 ot a1, 1 _
L 1((3—1—2)2) =e 2L 1(8—2)26 2,

F(s)= 5, Fls—(-2)) =

Compute £(e") again: Since £(1) = 1, we get

In case k = 1w, we get

Li(e“”t) _ 1 _ s+ 1w

s—iw  s2+w?’

Recall Euler’s formula e = cos wt + i sin wt, thus

) L(coswt) = v

E(Sin wt) = m

52 +w?’

Compute £~ (32): Apply the above formula for w = 2, we get

s2+4

s+ 2 S 2
E_l :£—1 E—l
(52—1—4) (52—1—4)1L (s2+4

) = cos 2t + sin 2t.

Compute £~ (75-—): Since

2425 +2=(s+1)*+1,
we get
S S s+1—-1 s+1 1
2+25+2 (s+12+1 (s+12+1 (s+12+1 (s+1)2+1
Thus ¢ = —1 and

L

1
s24+1

s
s24+2s+2

S

ot
J=e L (52+1

) —e LT

) = e '(cost —sint).

7. MORE LAPLACE TRANSFORM FORMULAS
Example: Solve " — y =t, y(0) = ¢/(0) = 1: Recall that
L(y") = s*Y — sy(0) — ¢/ (0) = s°Y — s — 1.
Apply Laplace transform to our equation, we get
1
szY—s—l—Y:K(t):S—Q.
Thus 1
2
-1)Y = 14+ =
(s ) s+1+ 2
e
s+1 1 1 1

Y = = .
32—1+32(s2—1) s—1+32(32—1)
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Notice that

1 1 1 1 1 1 1
s2(s2—1) s2—1 s2 2\s—1 s+1 52’
Thus )
y=L1Y)=¢ + i(et —e ) —t.
Let us introduce the following definition.
Definition 7.1 (sinh ¢ and cosh t).

t —t t —t
. e —e e +e
sinht := ————, cosht:=

\]

Exercise: L£(sinht) = ﬁ, L(cosht) = z*5.
Example: Consider f(¢) such that
Ft)y=1,if3<t<4 ft)=0,if0<t<3ort>4.

Then

—S —S

00 4 4 —st —4s
_ —st _ . ,—st — € — € _
£(f)_/0 f(t)e dt_/3 1-e~t dt /3d( )
Thus

Laplace transform of integrals: Put

o(t) = /0 f(r) dr,

then

Thus

-1 1 . Q
Compute £ <s(32+1)>‘ Since

we get

1 i !
£t <$(> = £_1(£(8mt>) = / sinTdr =1 — cost.
0

s2+1) s

Compute £ (ﬁ) we have




thus

£ <i~s(sl_1)):/0t(eT—1)dT:et—l—t.

Laplace transform table:

1
L kt :
(€)= =%
n!
‘C(tn) - 3n+1;
s , w
L(coswt) = oL L(sinwt) = 2wl

L(f") = s*F(s) = sf(0) = f'(0);

L(eMf(1)) = F(s — k);

E(/Otf(T)dT>:FiS).

Remark: Integration by parts is enough for all the above formulas!

8. USING STEP FUNCTIONS
Definition 8.1 (Step function). Let a > 0, the step function u(t — a) is defined as follows
u(t—a) =0, for0 <t <a, u(t—a)=1, fort > a.
In case a = 0 we call u(t) the Heaviside function.
Exercise: Draw the graph of f(¢) = u(t — 1) — u(t — 3).
Exercise: Draw the graph of f(t) = (u(t) — u(t — 7)) sint.
Exercise: Draw the graph of f(t) = u(¢t) +u(t — 1)+ +u(t —n) +---.

Laplace transform of the step function:

E(u(t—a)):/oooeStu(t—a)dt:/aooeStdt:Lwd(e_St): <

—S S

Exercise: Compare the graph of u(t — a) f(t — a) with the graph of f(¢).
Theorem 8.2 (t-Shifting theorem).
Lu(t —a)f(t —a)) = e *L(f).
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Proof. We have
L(u(t—a)f(t—a)) = /OO e St f(t —a),dt.
Considert — a = z,1.e. t = = + a, then ’
/00 e*S(IJ““)f(a:) d(x+a) = /OO e*S(H“)f(a:) dr = e % /Oo e f(x)dx.
The right ha(ild side is just e L(f). 0 O O

Remark: Compare with the ¢-Shifting formula
L{e"f(t)) = L(f)(s — a).

Example: £7!(e~*—L;) Since

we have

z—l(e—ss_%) = N et (e,
Apply inverse Laplace transform to the above theorem, we get

L7 e 2 L(e?)) = u(t — 1),
Can you draw the graph of u(t — 1)e2(t=1) ?

RC-Circuit equation (see page 29 section 1.5 and page 93 section 2.9 of Kreyszig’s book): R, C
postive constants, i(t), e(¢) functions:

Ri(t) + é/o i(r) dr = e(t).

Apply the Laplace transform, we get

i.e.

R+ & T s+ 2 R
Example: Consider
e(t)=u(t—1)—u(t—2), R=C=1.

Then )
e % e s
FE(s) = —
()= -,
Thus )
e 5 —e %S
I —
(5) s+1
Since ]
E —t
)= —7
we get
I(s) = efsﬁ(e*t) 672s£(67t).
Thus



Example: Let

n=0
then
[ee] o0 @7"5 1 [ee)
L0 =Y Llult—m) =D S = - ()",
n=0 n=0 n=0
Recall that
o0
>
n=0
thus

L (Zu(t —n)> = 3(1_165).

n=0
9. DIRAC DELTA FUNCTION
Mathematical definition of the Delta function: ¢(¢ — a) is a map:
6(t —a): f— fla).
Consider f(s) = e~*!, then
fla) =e".
Thus
5(t —a)(e™sh) = 795,

Definition 9.1. We shall define Laplace transform of §(t — a) as 6(t — a)(e™*?), i.e.
L(6(t—a))=e .

Intuitive definition of the Delta function: §(¢ — a) is defined by the following "formal" integral:
oo
| s - ot = r(@.
0

1
dp(t —a) = o ifa<t<a+k; dp(t—a)=0, otherwise,

Consider function

then

lim/ f(t) dkt—a)dt—hm; a+kf(t)dt:f(a).

k—0 k—0 a

Thus we can think of §(¢ — a) as the limit of dy(t — a)

/f t—adt_hm/ f(t)di(t — a) dt = f(a).

In case f(t) = e, the above formula gives

/ e St5(t — a) dt = e,
0

That is the reason why we say that e~%¢ is the Laplace transform of (¢ — a).



Example: Relation with the step function:
t
/ §(r —a)dr =u(t —a).
0

Application: solve
' +y=245(t-1), y(0)=19'(0)=0.
Apply Laplace transform to the equation, we get

SY +Y =e7".
Thus
—5
Y =
5241
Notice that .
L(sint) = ——

thus
y= L e L(sint)) = u(t — 1)sin(t — 1).
10. LAPLACE TRANSFORM: USE KNOWN FORMULAS OR COMPUTE BY YOURSELF.
Let us compute Laplace transform of
ft)=t,if0<t<a, f(t)=0,ift > a.
Method 1: using L(u(t — a) f(t — a)) = e~ **F(s). First, let us write
fO)=Q—-ult—a))t=t—u(t—a)t=t—u(t—a)(t —a)—au(t —a).
Thus

1 6—(18 —as

L(f) = L{t) = L(u(t = a)(t — 0)) — aL(ult — a)) = = — 5 — a°

52 52 S

Method 2: compute by yourself:

o0 a a e~ st a e—st e~ st
| etswar= [Ceta= [Crac) = [ae S -
0 0 0 —$ 0 -5 —S

Thus
as 1 a
L(f)=a ¢ / e st dt
—S S 0

Since .

a a —S as O 1 —as

/e‘Stdt:/d(e R

0 0 —S —S —S S S

we have

L(f)=a-

Please choose the method you like.

Sometimes it is easy to make a mistake when applying a formula: Please find where we go
wrong in the following computations:

u(t —m)sint = u(t — w)(—sin(t — 7)) = L(u(t — 7)sint) = —

s24+1
Please compute by yourself if you think it is right !
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It is nice to apply formulas when solving differential-integral equations: Consider the follow-
ing equation for RLC-Circuit (see page 29 section 1.5 and page 93 section 2.9 of Kreyszig’s book):

Li'(t) + Ri(t C/ Ydr =V (t).

R=C=L=1V(t)=6(t—1), i(0) = 0.

Assume that

Then we have .
(') + L) + £(/ i(r) = LGt —1)).
0
Apply the formulas, if you are lucky then you can get
1
sl —04+1+—-=¢7
s

ie.
Then we know that

s cqe —1(o—s__s
Exercise: Compute £ (6 P +S+1>-

11. CONVOLUTION, L(f xg) = L(f) - L(g)
Let f(t), g(t) be two functions for ¢t > 0.

Definition 11.1 (Convolution of f and g).

(fxg)(t /f g(t —7)dr, t>0.
Example: 1 x¢ = %: we have
t 2 2
t t
lxt= [ 1-(t—T)dr=t' —— = —.
* /0 (t—7)dr 5=

Example: { x 1 = %-: we have

t £2
t*lZ/TdT:.
0 2

In general, consider 7 = ¢ — u, we have

/O f(r)g(t — 7)dr = /0 £t — u)g(u) d(u) = /0 o(u) f(t — u) du,

fxg=gxf.

which gives

Exercise:



t)u:/otf(T)dT

f)*6(t) = f(t), f(t)x0(t—a)=u(t—a)f(t—a).
Theorem 11.2 (Laplace transform of convolution).
L(fg)=L(f) L(g)-

Proof. [Not assumed in this course]. We have

L(f*g)= / ‘“(/f t—7d7->dt.

{t,7):0<t<oo,0<7T<t}={(t,7):0< T <00, t>T},

/ </ J(m)gt =) dT) dt = /OOO f(7) </TOO e *tg(t—) dt) dr.

Notice that if we take ¢ — 7 = x then

/ e Stg(t —1)dt = / e~ g () de = e L(g).
T 0
Now we have

[0 ([ eatena) ar= ([ smeir) e

L(f*g)=L(f) L(g)

Since

we have

which gives

Remark 1: Since f(t) x0(t —a) = u(t — a) f(t — a), the above theorem gives
L(f)e™* = L(u(t —a)f(t —a)).
Remark 2: Since

L(fx(gxh)) = L(f)-L(gxh)=L(f)-L(g) - L{h) = L((f *g)*h),
we get f x (gxh) = (f *x g) *x h (can you prove this directly ?).

Compute: (" x " = —mnl__ym+n+1

= Tt 1)1 , m,n=20,1,--- The above theorem gives

m! n!
gm+1  gntl )-

"t = LTUL(ET ) = L7

Example £~ ((82+1) ) = sinizteost Since

LY

m) = Sint,

we have

LY

) = £7N(L(sint) - £(sint)) = sint » sin = / sin(r) sin(t — 7) dr.

(s241)2 0



By (3), we have
2sin(7) sin(t — 7) = cos(7 — (t — 7)) — cos(7 + (t — 7)) = cos(27 — t) — cos't.
Thus

t ¢ . .
2r —t) — t t— —1 t t
/ sin(r) sin(t — 7) dr :/ cos(27 —t) — cos g = BB sin(—t)  tcos
0 0 2 4 2

and we have
1 sint — tcost

(§+4V): 2
Example: differential equation: Consider
y" +y =sint, y(0) =0, /' (0) = 1.
Apply the Laplace transform, we get
s2Y — sy(0) — ¢/ (0) + Y = L(sint),

LY

ie.
Y —14Y =

s2+1°
We have
1 1

BEET RS

By the above example, we have

sint — tcost _ 3sint — tcost
2 N 2

y =sint +
Example: Convolution equation: Consider
y— /Ot(t —7)y(r)dr = 1.
Notiec that

/ (t—7)y(r)dr =y *t.
0

Apply Laplace transform to the equation, we get

1 1
Y_Y'72:77
S S
i.e.
1 S 1 1 1
Y: = = — _— .
s(1—s72) s2-1 2(51+8+1>
Thus . .
y:€+26 = cosht.

Application to non-homogeneous linear ODEs: Consider
Y+ by +cy=r(t),
given y(0) and y'(0), we have
s2Y — sy(0) — ¢/ (0) + b(sY — y(0)) 4+ ¢Y = R(s).

)



Thus

1 sy(0) +y'(0) + by(0)
— . =K . .
s24+bs+c R(s) s24+bs+c (5) - B(s) + G(s)
Thus
y=kxr+g.

Example: Consider
y' +y=r(t), y(0)=y'(0)=0.
Apply the Laplcae transform, we have
s’Y +Y = L(r).
Thus
Y =

82 + 1 : E(r)7

which gives

y(t) = sint *r.

12. F'(s) = L(—tf(t))
Theorem 12.1. Let F'(s) = L(f). Then we have
F'(s) = L(=tf(1)),
and
ft)

o0
/ F(u)du = E(T), not assumed in this course.
S

!
—~
»
~—
I

| e

0
we get

For the second formula,

LwF@mu:Lw<Awemﬂwﬁ)mh

change the order of integration, we get

[T e rwa) an= [Tre ([T e ) ar

Thus the second formula follows from

[e%¢) 0 —ut —st
—ut d _ / d (& _ e .
/S e u i ( — ) "




Compute L(tsint) = (322%)2: By the above theorem,
1 2s
L(tsint) = — "= :
(tsint) = =577 = @y

Compute: £~ (In(1 + 572)) = 2225 TetIn(1 4 s72) = F(s) = L(f), then

2s 2

!/ _ 2 2\\/ _
F' = (In(1+ s*) —In(s7)) =112 5

Thus
L7YF") =2cost — 2.
By the above theorem, we have
LTHF) = —tf(t).

thus
_ 2 —2cost

1 ===

13. SYSTEM OF DIFFERENTIAL EQUATIONS
We shall only give an example:
v ==yt vh=—y1—y2+ f(t), y1(0) =y2(0) =0.

Apply the Laplace transform, we get

sY1 ==Y + Yo, sYo=-Y] — Yo+ F(s).
Thus

(s+1)Y1 — Yy = 0;
and
Yi+ (s+1)Yy = F(s).
The first one gives Ya = (s + 1)Y], together with the second, we have
Yi=F(s)(1+(s+ 1%L
Thus
Yo = F(s)(s+1)(1+ (s +1)*) L
Now we have
y1 = f(t)* (e tsint), yo = f(t) * (e ' cost).

when f(t) = e, we get

t
Yy = / e e TsinTdr = e t(1 —cost), y2 =e 'sint.
0
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14. COMPLEX FOURIER SERIES
Fixp > 0, if
fx+p)=f(zx), Vx € R,
then we call f a periodic function with period p.

Example: periodic function:

1. A polynomial is periodic if and only if it is a constant;
2. e is has period 27 if and only if

A=1in, né€Z.
Recall that the main idea of this course is to represent a function f by eigenvectors e** of the

derivative. If f has period 27 then we hope that those eigenvectors that have the same period 27 will
be enough to represent f. The main theorem in Fourier analysis is the following:

Theorem 14.1 (Fourier 1807). If f has period 27 and is smooth enough then we have
f(z) = ch e Yz €R.
nez

——The proof (see Page 63 in [3]) is not assumed in this course.

What does "'smooth enough'' mean? It means that f is piecewise smooth and

Fo) = f(zo+) ;L f(SUO*),

if f is not smooth at xg.

How to compute c¢,, ? We shall prove that

1 7 -
Cn = 5 /7T f(z)e " du.

In fact , by the above theorem, we have

1 i f( ) fin:cd § : Cm /ﬂ- tmax 7in:(:d
-— xI)e Tr = - e e ZX.
21 J x meZ 27 J—x

By (2), we have

eimae ,—inz _ ez(mfn):p'

iy i i iy
/ eMTe T dy = / 1dx = 27.
—Tr —Tr

Notice that if 7 # n then we have

T T i(m—n)x
/ M=z gy — d(,ei) = 0.

- —x i(m—n)

If m = n then it gives

Thus

c ™

m 3 —1

§ : 6zmme nx dr = -
2 J_,

meEZ
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Definition 14.2. We call
f(l‘) _ cheinm
nez
the complex Fourier series of f and

1 4 .
Cn 1= — f@)e ™™™ dx, n € Z,
s

the complex Fourier coefficients of f.

—T

Remark: (not assumed in this course): The above theorem is also true for periodic delta function

f= Zé(m — 2km),

kEZ
then we have
1 " 5( ) —inxd 1
Cp = — T)e r=—
"o ) 21’
thus )
_ nT
Z&(J:Jr?knr) = %Ze .
kEZ nez

This formula says that the spectruml set of the periodic delta function is Z, which explains the Poisson
summation formula.

Example: Consider

and
f(0) = f(m) = f(=m) = 0.
Then we know f is smooth enough and

i ‘ s ) 0 )
2mey, = flx)e "™ dx = / e " dr — / e " dr.
-7 0

—T

Since '
s ) ™ —inx 1\ -1
/e_”“”dx:/ d(6 , ):( ) )
0 0 —mn —imn
and
0 0 —inx n
, 1—(-1
/ e_mxda::/ d(6 —) = ( ) ;
. o —in —in
we have
2(1 — (=)™
yre, = 21— (=)
mn
ie.
2
cn, = —, nodde; ¢, =0, neven.
T

Thus the complex fourier series of f is

fz) = Z @m 1 n 2 giZmtl)z,

Lo i(2m+ I8k
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15. (REAL) FOURIER SERIES

In the previous example, f is a real function, thus the complex Fourier series should also be a real
function. Let us verify this fact:

2 ) 632’x 2 efi:r 6731‘:)3
o= 2 (a0 e 2 (T L),

i 3 i\ —1 -3
thus , ,
ir _ ,—3iz
f(z) = % ((e” e ")+ c 36 + >
Since
e — 7" = 2isin nx,
we get

4 in3
f(x)z(sin;r—l—sm x—i—---),
0 3

T 4 1 1 1
R (e e )

In particular, it gives

Thus

which is a famous formula obtained by Leibniz in 1673 from geometric considerations.
Fourier series: In general, by the Euler formula
e = cosnx + isinnx,
we know that
Sene =3
et = cp(cosnx + isinnz),
which gives

o0 oo
f(x)=co+ Z cn(cosnz + isinnx) + Z c_n(cosnz — isinnx).

n=1 n=1

Thus we have

f(z)=co+ i ((en + c—p) cosnx + i(cy, — c—p) sinnz) ,

n=1
Recall that
1 T ) ) 1 T
(cn+c_p)=— flz)(e ™™ + ™) do = — f(x) cosnx dx,
27 — T J—x
and
. i [T — ' (" .
i(cn —cop) = o | (x)(e " — ") dx = =] f(x)sinnx dx,

thus we get the following theorem:
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Theorem 15.1. If f has period 2w and is smooth enough then it has the following Fourier series
expansion

f(z)=ap+ Z(an cosnx + by, sinnx),

n=1
where ag, a,, b, are the Fourier coefficients of f such that
1 s
= = — d
a0 = o = 5 7ﬂf(33) T,
andforn =1,2---, we have
1 s
an = — f(x)cosnzx dz,
u —Tr
and
1 s
by = — f(z) sinnx dz.
™ —Tr

Remark: We can aslo compute a,,, b,, directly by using the following proposition.

Proposition 15.2. Put 6., = 1 if m = n and dpmy = 0 if m # n then

s s
/ cosn:ccosma:dx:/ sinnxsinmzr dr = 7dmn, m,n=1,2,---,

—T —T

and
s s
/ cosnz dr = 2wdng, / cosnxsinmx =0, m,n=20,1,2,---
—T —T
Proof. Follows from the Euler formula
einw 4 e—inz einx o e—inax

cosnr = —— sinnx = - ,
21

2
and

i
/ eM™Te™"MT dr = 270 mn.

—T

Exercise: Using the above proposition to prove the formulas for a,,, b,,.
Example: Consider

flz)=0, —r1<zx<0; flzx)=z, 0<z<m.

Then
™ T 7T2
2may = f(x)dm:/ rdr = —,
—7 0 2
and
Wan:/ f(:c)cosnxdx:/ xcosnxdx:/ xd(smm:):_/ ST .
-7 0 0 n 0 n
Since
_/7r Sinnxdxz/”d(cosznx): (—1)7;—1’
0 n 0 n n
we get
T -2
CLOZZ’ agm = 0, a2m—1:ma m=1,2
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Moreover, we have

™ T ™ _ -1 n+1 T
by, = f(x)sinrmdx:/ xsinnmd:v:/ xd( cosn:L‘):ﬂ’( ) +/ cnme
—r 0 0 n n 0 n
Notice that
/Tr coS NI dx:/”d(sin;ut) 0,
0 n 0 n
thus
1 n+1
) ()
n
Thus

T 2 cos 3x ) sin2x  sin3z
f(x) =+ ——|cosz+ +--- )+ | sinz — + o).

Take = = 0 then we get

T 2 1

0=— — 21+ —4...
ie.

el dl T
32 52 8

Exercise: Use1+3i2+5i2+... = %Qto prove that
R o
22 32 6

16. ODD OR EVEN EXTENSION: FOURIER SINE AND COSINE SERIES

Definition 16.1. We say that f is odd if f(—x) = — f(x); f isevenif f(—z) = f(z).

Example: For every positive integer n, we know that cos nx is even and sin nx is odd.

Application: If f is even then

/:f(:c) do = 2/0Wf(x) da.

/:f(ac)dx = 0.

If f is odd then

In particular, if f is odd then all

1 ™
an = — f(z) cosnx dx = 0;
™ —T
if f is even then all
1 ™
by = — f(z)sinnx dx = 0.
™ —T

Thus we proved the following theorem:

dx,
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Theorem 16.2. Assume that f has period 27 and is smooth enough. If f is odd then it can be written
as a Fourier sine series

o0 2 T
flx) = E by, sin nx, bn:/ f(x) sinnx dx.
T Jo
n=1

If f is even then it can be written as a Fourier cosine series
1 T & 2 0
f(x):/ f(a:)da:—I—Zancosnx, an:/ f(z) cosnz dx.
™ Jo o ™ Jo

Odd or Even extension: Let f be a function in (0, 7). Then we can extend f to an odd function,
say f, such that

fo(=2) = = f(2), x € (0,7);

we can also extend f to an even function, say f. such that

fe(=z) = f(z), x € (0, ).

Example: Consider a function

f(z) ==, 0<x<g; f(x):g, g<x<7r,
then we can write
folz) = an sin nzx,
and

fe(x) =ag + Z Gy, COS VL.

By the above theorem, we have

T z ™ 1 32
Tag = ; f(w)dw—/(:xd:r—kﬁ gd$:§(g>2+g(7r—g):%,
and
m T 3 T
2am:/ f(x)cosmxda;:/ xcosmxdw—i—/ §cosm$da¢.
0 0 g

™
Since f02 x cos mx dx can be written as

™ s
2 sinmx T . m7 2 sinmax T . m7 1 mm
/ xd( ):sm—/ dr = —sin — + —(cos — — 1),
0 0

m 2m 2 m 2m 2 m? 2
and
T T . mw
—cosmxdr = —— sin —,
/w 2 2m 2
we get
mm
Uy = mzﬂ_(COST —1).
Thus
f( ) 37r+ 2 2cos2x cos3xr  cosdx
r)=—+—| —cosz — — — — ]
© 8 7 22 32 52
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For b,, we have

gbm:/ f(a:)sinmxd:c:/stinmzdx+/ gsinm:ﬁdx.
0 0 z

jus
Since f02 x sin mx dx can be written as

T T
2 cos mx - mm 2 COSMT - m 1 . mm
x d( ) = ——cos — + T = — oS —— + —5sin——,
0 —-m 2m 2 0 m 2m 2 m 2
and
T s mm
—sinmax dx = —— (cosmm — cos ——),
x 2 2m 2
we have
2 1 . mm T 2sin % cosmm
by = — —5sin—— — ——cosmm | = 5 —
T \m 2 2 mem m
Thus

2 . 1\ . -2 1Y\ .
folx) = <7r + 1> sinx + <O - 2) sin 2z + <327r + 3> sin 3z
1\ . 2 1\ .

+ <0+4) sin4zx + <527T+5> sindx 4 -+ .

17. APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS

Let f be a smooth enough function with period 27. We hope to find an N-series,

e inT
FN = E Cne s
[n|<N

/ Fy — f2de

—T

such that

is minimal. The main idea is to use orthogonal decomposition.

Orthogonal Decomposition in vector space: Let S be a subspace of a vector space V, then we
can write a vector, say v, in V' as
v =vg + VgL,
where vg lies in .S and vg. is orthoginal to S. Then it is very clear from the picture that vg is the
unique solution of the following extremal problem:

llvs — v|| = min{||u — v|| : uw € S}.
For a real proof it is enough to use

llw = vl[* = [lu = vsl* + |Jvg |,
which implies that u = vg is the unique solution.

Orthogonal Decomposition in L?-space: In our case, we consider V as the space of complex
functions spanned by {e"""* }, <z with the following inner product structure:

(ho) = [ f@at@de, 1917 = (5.9
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Now S is the subspace of V spanned by e™*, |n| < N. Let f be a smooth enough function with
period 27. Then we know that

Ifs = fIl = min{[|u = ][ : w € 5}
Thus Fy = fg solves our extremal problem.
What is fs ? The simplest way is to use the complex Fourier series expansion

f(:c) _ chein:p7

neL

fN: Z cneinxv

In|<N

Put

since {€*},,c7 is an orthogonal basis of V' we have

(vaf_fN) :07
which implies that
In=fs.

Thus we have

Theorem 17.1. Complex Fourier series expansion solves the best trigonometric polynomial approxi-
mation problem.

Bessel’s inequality and Parseval’s identity: Notice that

AP = P+ 11 = ]2,

Thus we get the Bessel inequality

TN
ie. i
/ F@Pde>27- 3 feal’,
T [n|<N

and the Parseval identity

[ 1t@Pdr =20 e

d ne”Z
Example: Consider the example in the end of section 14:

f@y=1,0<z<m flr)=-1, -1<z<0,

and
f(0) = f(m) = f(=m) =0.

We know that f has the following complex Fourier series expansion:

2 .
— i(2m+1)z
/(@) mZG:Zi(Zm—f—l)we '

Thus the Parseval identity gives

1 i 4 8 1 1
rf<x>12dx=1=2:ﬂ(1+++.~>,

9. 2.2 2 2
2r ) . et (2m +1)%7 3 5
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which gives another proof of

T S w2
32 52 8
18. FOURIER TRANSFORM: BASIC FACTS

Definition 18.1. We call

flw)=—= [ rla)e e,
the Fourier transform of f and write f = F(f).

Example: F1: Fourier transform of f(z) = 1if |z| < 1 and f(z) = 0 otherwise:

A~

1 © . 1 1 )
f(w) = \/ﬂ/ f(x)eflwff dxr = E /1 e~ WT 1

1 1 —jwx —iw w :
. e e e 2sinw
/ e " dx = / d(——)=————= .

1 1 —iw —lw  —tw w

if w # 0 then

Notice that

Thus we can write

Example: F2: Fourier transform of f(z) = e if x > 0 and f(z) = 0 otherwise:

A~

1 > —iwzx _ L > e—l‘e—iwx T = L e_th
F(w) .:m/_wfu)e d = m/o dr = = L)),

Recall that 1

s+iw’

L(e™™")(s) =

thus ) )
w) = ——"- .

f(w) Vor 14w
From Complex Fourier series to inverse Fourier transform: Assume that f is smooth enough
in—N < x < N and f = 0 when |z| > N. For each L > N, let us define a periodic function f7,

such that

fo(@) = f(x), |z| <L; fo(z+2L) = fr(z).

gr(r) = fL (6:6) ;

has period p and is smooth enough. Thus

Then we know that

, 1 /7 :
gr(z) = chemx, Cp = By gr(z)e """ dz.
T )

fo(z) = g1 (%) = chem%.

Thus
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@ , We can write

= [ et a = g [T e a= ST

Consider v =

which gives

\/> % ein%
ne’l
Put

T
Aw = —
W=7

f(zx) \ﬁ Zf (nAw) - =A% Ay,

nez

then we have

Assume that f (w)e™™™ is integrable in —0co < x < 0o. Let L goes to infty, the above formula gives

1 <2 W
f@)= = | dwe du.

Definition 18.2 (Fourier inversion formula). If

(10) flz) = \/12? / " f(w)e du,

then we say that f(z) is the inverse Fourier transform of f(w) and write f = F~1(f).

When is the Fourier inversion formula (10) true ?

1. It is known that (see Page 141 Theorem 1.9 in [3] ) the Fourier inversion formula is true is true
if f is smooth and rapidly decreaing, in the sense that

sup |z|¥| fV ()] < oo, forevery k,1 > 0,
z€eR

where f() denotes the [-th derivative of f.

2. (Not assumed in this course) In general, assume that f is good: i.e. f is piecewise smooth,
Jg |fldz < oo and

flzo) = f(zot) ;r f(i'fo—).

if f is not smooth at xy. Then Fourier inversion formula is true in the following sense (see Page 171,
Theorem 7.1 in [4])

»

x

Example: f(z) = e~ = is smooth and rapidly decreasing. Let us compute

A 1 o0 2
W) = —— e ze Mg,
fw m/

The idea is look at the derivative

£ f(w)
(11) / _% e~y = F(—izf(z)).

’—‘O
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Since .
~ S 2
0) =— e 2 dr >0,
10) = - .
we get
fO)=1, f=1.

Remark: normal distribution: One may also use integration on R? to compute the following
integral directly (see page 138 formula (6) in [3])

(2 v

Consider
u=tr+p, t>0, peR,
the above formula implies the following classical formula in Gauss’s normal distribution theory

o0 1 (u— u
(13) ——e du =1,
oo V27t
where
1 uU— 2
(14) flx|pt) = T

v 27t

is the probability density of the normal distribution with expectation 1 and variance t.
Examples of Fourier inversion formula for '"good' functions, not assumed in this course:

1. Consider the function in Example: F1, the Fourier inversion formula gives

2 2 [Fsi
f(z) = lim / \/7$1nw 0 dw = lim / Y coswa da.
L—oo /27 L—oco T Jo w

where f(z) = 1if [z| < 1, f(z) = 0if || > 1 and f(z) =  if |z| = 1. In particular, take z = 0 we
get

L ginw

T lim dzx

L—o0 0 w
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2. Consider the function in Example: F2, the Fourier inversion formula gives

)= g o [y
xz)= lim — ——e""dw

L—=oo 21 J_; 1+ iw ’

where f(z) = e ®if2 > 0, f(z) = 0if z < 0 annd f(0) = 1. Take z = 0, we have

* 1

1 1 o 1
— = lim / — dw = — —— dw,
2 Looo 2w J_p 1+iw TJo 1+w?
i.e.
> 1 T
——dw = —.
/0 11wz ™72

Exercise: Use w = tanf := Sg‘;g to prove the last integreal.

19. FOURIER TRANSFORM OF DERIVATIVE AND CONVOLUTION, DISCRETE FOURIER
TRANSFORM ?

In this section, we only consider functions that are smooth and rapidly decreasing.
Following Berndtsson’s notes, the text book and the video (21) I will add discrete FT. For the FFT,

will ask Anne about discrete Fourier transform and fast Fourier transform.

20. PARTIAL DERIVATIVES AND GAUSS’S DIVERGENCE THEOREM

use the divergence theorem of Gauss to derive the wave equation and the the heat equation. A3.2,

10.7,12.1, 12.2, 12 4.
Show that the normal distribution function satisfies the Heat equation. Define the heat kernel.
21. WAVE EQUATION

Separating variables, use of Fourier series 12.3

22. HEAT EQUATION, I

1. Separating variables, use of Fourier series 12.6
2. Steady case 12.6 , Laplace equation, Separating variables, use of Fourier series

23. HEAT EQUATION, II

3. Final 12.7. Modeling Very long bars, solution by Fourier integrals and transforms.

24. SOLUTION OF PDES BY LAPLACE TRANSFORMS OR REPETITION

Exam (current version):
1 (big problem). Laplace transform, solve second order ODE, use inverse transform.

2. (small). Compute complex Fourier series Given f, if f is sum of cn e inx, compute cn, if cos sin

compute an bn.
3. (big) Fourier transform of the gauss function, prove normal distribution integral one, prove that

it satisfies the heat equation.
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