
1. INTRODUCTION

These are lecture notes on Laplace transform, Fourier transform and their applications by Xu Wang
based on Erwin Kreyszig’s book Advanced engineering mathematics (10 th edition), Dag Wessel-
Berg’s video: http://video.adm.ntnu.no/serier/4fe2d4d3dbe03 and references [1, 3, 4].
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2. WHAT IS e ?

Eigenvector: Recall that if A : Cn → Cn is linear, we call u 6= 0 in Cn an eigenvector of A if

(1) Au = λu,

where λ is a constant in C.

Eigenvector of the derivative: In this course, we will answer the following question first:

What is an eigenvector of the derivative ?

By (1), we want to find function u : R→ C such that

u′ = λu.
1
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Assume that

u(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · .

The following lemma gives:

u′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 + (n+ 1)an+1x

n + · · · .

Lemma 2.1. (xn)′ = nxn−1, n = 1, 2, · · · .

Proof. If n = 1 then

x′(x) = lim
4x→0

(x+4x)− x
4x

= 1.

Assume the Lemma for n = 1, · · · , N − 1. Then (fg)′ = f ′g + fg′ gives

(xN )′ = (xN−1)′ · x+ xN−1 · x′ = (N − 1)xN−2 · x+ xN−1 = NxN−1.

The proof is complete. �

Exercise: Why we have (fg)′ = f ′g + fg′ ?

Now

u′ = λu⇔ λan = (n+ 1)an+1, n = 0, 1, · · · .

Thus

an+1 =
λan

(n+ 1)
=

λ2an−1

(n+ 1)n
= · · · = λn+1a0

(n+ 1)n · · · 1
=

λn+1a0

(n+ 1)!
,

where we define

n! = 1 · 2 · · ·n.

Then we have

u(x) = u0 · (1 + λx+ · · ·+ (λx)n

n!
+ · · · ).

Put

E(x) := 1 + x+ · · ·+ xn

n!
+ · · · .

Since for every C > 0,

lim
n→∞

Cn

n!
= 0,

we know that E(x) converges for all x ∈ C.

Theorem 2.2. E(λx) is a unique solution of the eigenvalue equation

u′ = λu,

with initail condition u(0) = 1.

Definition 2.3. We shall define

e := E(1) = 1 + 1 +
1

2
+ · · ·+ 1

n!
+ · · · .
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3. EXPONENTIAL FUNCTION

Let us write
e2 = e · e, e3 = e2 · e,

and define em inductively by
en+1 = en · e.

Since e is positive, we can take the q − th roof of em, we write it as e
m
q . Thus for every x ∈ Q, ex is

well defined. The following lemma tells us that E(x) is an extension of ex from Q to C.

Lemma 3.1. For every x ∈ Q, we have ex = E(x).

Proof. Since E(1) = e, it suffices to prove

(2) E(λ1)E(λ2) = E(λ1 + λ2),

for every λ1, λ2 in C. Notice that

(E(λ1x)E(λ2x))′ = E(λ1x)′E(λ2x) + E(λ2x)′E(λ1x).

Put
G(x) = E(λ1x)E(λ2x).

Apply E(λx)′ = λE(λx), we get
G′ = (λ1 + λ2)G.

Notice that G(0) = 1. Thus Theorem 2.2 implies that

G(x) = E((λ1 + λ2)x).

Take x = 1, we get E(λ1)E(λ2) = E(λ1 + λ2). �

Exercise: Find a direct proof of E(λ1)E(λ2) = E(λ1 + λ2) without using Theorem 2.2.

Definition 3.2. We shall use the same symbol ex to denote E(x) for all x in C and call ex the
exponential function. If x > 0 then we define lnx as the unique real solution of elnx = x.

By Theorem 2.2, we know that ex is fully determined by

(ex)′ = ex, e0 = 1.

Jordan normal form of the derivative (this part is not assumed in the course) In linear algebra,
we know that if A : Cn → Cn is not diagonalizable then we need to find u such that

(A− λ)mu = 0,

for some positive integer m. In our case, if λ = 0 then
dm

dxm
u = 0,

if and only if u is polynomial of degree m− 1. In general, one may check that

(
d

dx
− λ)mu = 0,

if and only if u(x)e−λx is a polynomial of degree m− 1. In linear algebra, we hope to write

u = a1u1 + · · ·+ akuk,

where uk satisfies
(A− λk)mkuk = 0.
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In case A is the derivative, then it suggests to write a function u as a

u(x) =

∫
eλx a0(λ) + x ·

∫
eλx a1(λ) + · · ·+ xk ·

∫
eλx ak(λ) + · · · ,

where each aj(λ) is a measure in C. If we only consider real λ then we call

F (s) =

∫ ∞
0

e−stf(t) dt,

the Laplace transform of f . In general, we call

f̂(w) :=
1√
2π

∫ ∞
−∞

e−iwvf(v) dv, i :=
√
−1,

the Fourier transform of f .

Recall definition of π and trigonometric functions: Fix P0 = (1, 0) in the unit circle

S1 := {(x, y) ∈ R2 : x2 + y2 = 1}.
A counterclockwise rotation of P0 gives a arc P0P . The length, say θ(P ), of the arc P0P is a function
of P . It is clear that the circumference diameter ratio is equal to θ(−1, 0).

Definition 3.3 (Definition of π). We shall write the circumference diameter ratio as π.

Denote by
F : θ(P ) 7→ P,

the inverse function of 0 ≤ θ(P ) ≤ 2π.

Definition 3.4. We shall write F (θ) = (cos θ, sin θ).

Notice that
F (0) = (1, 0) = F (2π), F (π) = (−1, 0), |F (θ)| ≡ 1.

In particular, it gives
sin(0) = sin(2π) = 0, cos(0) = cos(2π) = 1.

By definition of θ, we have ∫ θ̂

0
|F ′(θ)| dθ = θ̂, 0 ≤ θ̂ ≤ 2π,

which gives
|F ′(θ)| ≡ 1.

Now F (θ) · F (θ) ≡ 1 implies

F ′ · F + F · F ′ = 2F · F ′ ≡ 0.

Hence F ′⊥F , thus we know that

F ′(θ) = (− sin θ, cos θ), or F ′(θ) = (sin θ,− cos θ).

But notice that F ′(0) = (0, 1), thus we must have

F ′(θ) = (− sin θ, cos θ),

which is equivalent to
(cos θ + i sin θ)′ = i(cos θ + i sin θ).

Notice that cos 0 + i sin 0 = 1, thus Theorem 2.2 gives

Theorem 3.5 (Euler’s formula). eiθ = cos θ + i sin θ.



5

Take θ = π, we get the following Euler’s identity

eiπ = −1.

Moreover, apply (2), we get
eiθ1eiθ2 = ei(θ1+θ2),

thus by Euler’s formula, we have

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2),

i.e.

(3) cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

and

(4) sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

4. LAPLACE TRANSFORM, BASIC FACTS

Definition 4.1. Let f(t), t ≥ 0 be a given function. We call

F (s) :=

∫ ∞
0

e−stf(t) dt,

the Laplace transform of f(t). and write

F = L(f), f = L−1F.

In order to compute Laplace transforms, we need the following two fundamental formulas:

(5) d(fg) = fdg + gdf,

∫ b

a
df = f(b)− f(a),

where df := f ′(t)dt.

Example: L(1): Consider
f(t) = 1, t ≥ 0.

Then

F (s) =

∫ ∞
0

e−st · 1 dt =

∫ ∞
0

d(
e−st

−s
) =

e−st

−s
∣∣
t=∞ −

e−st

−s
∣∣
t=0

= 0− 1

−s
=

1

s
, s > 0.

Thus we get

(6) L(1) =
1

s
, L−1(

1

s
) = 1, s > 0.

Example: L(ekt), k ∈ R: We have

L(ekt) =

∫ ∞
0

e−stekt dt =

∫ ∞
0

e−(s−k)t dt = L(1)(s− k) =
1

s− k
, s > k.

Thus

(7) L(ekt) =
1

s− k
, L−1(

1

s− k
) = ekt, s > k.

Example: L(et
2
) does not exist: Notice that∫ ∞

0
e−stet

2
dt =∞,
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for all real number s.

Remark: Laplace transform is linear: For every pair of real numbers a, b, we have

(8) L(af + bg) = aL(f) + bL(g).

Example: L(3 + 2e5t): We have

L(3 + 2e5t) = 3L(1) + 2L(e5t) = 3 · 1

s
+ 2 · 1

s− 5
=

3

s
+

2

s− 5
=

5(s− 3)

s− 5
, s > 5.

Compute inverse Laplace transform: L−1( 1
s2−3s+2

): Notice that

1

s2 − 3s+ 2
=

1

(s− 1)(s− 2)
=

1

s− 2
− 1

s− 1
.

Thus

L−1(
1

s2 − 3s+ 2
) = L−1(

1

s− 2
)− L−1(

1

s− 1
) = e2t − et.

Proposition 4.2. L(tn) = n!
sn+1 , n = 1, 2, · · · , s > 0.

Proof. Put
Fn(s) = L(tn).

Then by (5), we have

Fn(s) =

∫ ∞
0

e−sttn dt =

∫ ∞
0

tnd(
e−st

−s
) =

∫ ∞
0

d(tn
e−st

−s
)− e−st

−s
d(tn).

Since ∫ ∞
0

d(tn
e−st

−s
) = 0− 0, if s > 0,

and ∫ ∞
0
−e
−st

−s
d(tn) =

n

s
· Fn−1(s).

We get

Fn(s) =
n

s
· Fn−1(s) =

n(n− 1)

s2
· Fn−2(s) = · · · = n!

sn
· F0(s) =

n!

sn
L(1) =

n!

sn+1
.

�

Remark: Recall that (tn)′ = ntn−1, n = 1, 2, · · · , thus the above proposition gives

L((tn)′) = nL(tn−1) =
n!

sn
= sL(tn).

In general, we have the following theorem

Theorem 4.3 (Laplace transform for derivative).

L(f ′) = sF (s)− f(0), where F (s) := L(f).
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We will prove the above theorem later, first let us show how to use it to solve first order differential
equations:

Verify Theorem 2.2: Consider
y′ = y, y(0) = 1.

Put
Y (s) = L(y).

Then we have
L(y′) = L(y) = Y (s),

Since
L(y′) = sY (s)− y(0) = sY (s)− 1,

we have
sY (s)− 1 = Y (s),

which gives

Y (s) =
1

s− 1
.

Thus

y(t) = L−1(
1

s− 1
) = et,

which verifies Theorem 2.2 for λ = 1.

5. LAPLACE TRANSFORM OF DERIVATIVES: HOW TO USE IT TO SOLVE DIFFERENTIAL
EQUATIONS ?

The main theorem in Laplace transform is the following:

Theorem 5.1 (Laplace transform of the derivative).

L(f ′) = sL(f)− f(0).

Proof. By (5), we have

L(f ′) =

∫ ∞
0

e−stf ′(t) dt =

∫ ∞
0

e−st df =

∫ ∞
0

d(e−stf)−
∫ ∞

0
fd(e−st).

Assume that for some real number k, we have

lim
t→∞

e−ktf(t) = 0.

Then for s ≥ k, we have ∫ ∞
0

d(e−stf) = lim
t→∞

e−stf(t)− f(0) = −f(0).

Since

−
∫ ∞

0
fd(e−st) = s

∫ ∞
0

e−stf(t) dt = L(f),

we get L(f ′) = sL(f)− f(0) on s ≥ k. �
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Remark 1: In the above proof, we use an extra assumption: for some k ∈ R,

lim
t→∞

e−ktf(t) = 0,

in this course, we only consider functions that satisfy the above condition.

Remark 2: Apply the theorem to f ′, we get

L(f ′′) = sL(f ′)− f ′(0) = s(sL(f)− f(0))− f ′(0) = s2L(f)− sf(0)− f ′(0).

In general, denote by f (n) the n-th order derivative of f then we have

Theorem 5.2 (Laplace transform of n-th order derivative).

L(f (n)) = snL(f)− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0).

Remark: How to use Laplace transform of derivatives to solve differential equation: By the
above theorem, if we apply the Laplace transform to a differential equation

y′′ + ay′ + by = c(t), a′b ∈ R,

then we get
s2Y − sy(0)− y′(0) + a(sY − y(0)) + bY = C.

Thus
(s2 + as+ b)Y = (s+ a)y(0) + y′(0) + C,

which gives

y = L−1(Y ) = L−1

(
(s+ a)y(0) + y′(0) + C

s2 + as+ b

)
.

Example: Consider
y′′ + 4y′ + 4y = 0, y(0) = 0, y′(0) = 1.

then the above formula gives

y = L−1

(
1

s2 + 4s+ 4

)
= L−1

(
1

(s+ 2)2

)
.

How to compute the inverse Laplace transform of 1
(s+2)2

? Is it related to L−1( 1
s2

) = t ? We will
introduce a simple method to answer these two questions.

6. s–SHIFTING: REPLACING s BY s− a IN THE TRANSFORM

Notice that ∫ ∞
0

e−steatf(t) dt = F (s− a), F (s) = L(f) =

∫ ∞
0

e−stf(t) dt.

thus we get the following theorem:

Theorem 6.1 (s-Shifting theorem).

L(eatf(t)) = F (s− a), L−1(F (s− a)) = eatL−1(F (s)).
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Compute L−1
(

1
(s+2)2

)
: In this case

F (s) =
1

s2
, F (s− (−2)) =

1

(s+ 2)2
.

thus a = −2. Since L−1( 1
s2

) = t, apply the above theorem, we get

L−1

(
1

(s+ 2)2

)
= e−2tL−1(

1

s2
) = e−2tt.

Compute L(ekt) again: Since L(1) = 1
s , we get

L(ekt) =
1

s− k
.

In case k = iw, we get

L(eiwt) =
1

s− iw
=

s+ iw

s2 + w2
.

Recall Euler’s formula eiwt = coswt+ i sinwt, thus

(9) L(coswt) =
s

s2 + w2
, L(sinwt) =

w

s2 + w2
.

Compute L−1( s+2
s2+4

): Apply the above formula for w = 2, we get

L−1(
s+ 2

s2 + 4
) = L−1(

s

s2 + 4
) + L−1(

2

s2 + 4
) = cos 2t+ sin 2t.

Compute L−1( s
s2+2s+2

): Since

s2 + 2s+ 2 = (s+ 1)2 + 1,

we get
s

s2 + 2s+ 2
=

s

(s+ 1)2 + 1
=

s+ 1− 1

(s+ 1)2 + 1
=

s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1
.

Thus a = −1 and

L−1(
s

s2 + 2s+ 2
) = e−tL−1(

s

s2 + 1
)− e−tL−1(

1

s2 + 1
) = e−t(cos t− sin t).

7. MORE LAPLACE TRANSFORM FORMULAS

Example: Solve y′′ − y = t, y(0) = y′(0) = 1: Recall that

L(y′′) = s2Y − sy(0)− y′(0) = s2Y − s− 1.

Apply Laplace transform to our equation, we get

s2Y − s− 1− Y = L(t) =
1

s2
.

Thus
(s2 − 1)Y = s+ 1 +

1

s2
,

i.e
Y =

s+ 1

s2 − 1
+

1

s2(s2 − 1)
=

1

s− 1
+

1

s2(s2 − 1)
.
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Notice that
1

s2(s2 − 1)
=

1

s2 − 1
− 1

s2
=

1

2

(
1

s− 1
− 1

s+ 1

)
− 1

s2
.

Thus

y = L−1(Y ) = et +
1

2
(et − e−t)− t.

Let us introduce the following definition.

Definition 7.1 (sinh t and cosh t).

sinh t :=
et − e−t

2
, cosh t :=

et + e−t

2
.

Exercise: L(sinh t) = 1
s2−1

, L(cosh t) = s
s2−1

.

Example: Consider f(t) such that

f(t) = 1, if 3 < t < 4; f(t) = 0, if 0 ≤ t ≤ 3 or t ≥ 4.

Then

L(f) =

∫ ∞
0

f(t)e−st dt =

∫ 4

3
1 · e−st dt =

∫ 4

3
d(
e−st

−s
) =

e−4s

−s
− e−3s

−s
.

Thus

L(f) =
e−3s − e−4s

s
.

Laplace transform of integrals: Put

g(t) =

∫ t

0
f(τ) dτ,

then
g′ = f, g(0) = 0.

Thus
F = L(f) = L(g′) = sG− g(0) = sG,

which gives G = F
s , i.e.

L
(∫ t

0
f(τ) dτ

)
=
L(f)

s
,

∫ t

0
f(τ) dτ = L−1

(
L(f)

s

)
.

Compute L−1
(

1
s(s2+1)

)
: Since

L(sin t) =
1

s2 + 1
,

we get

L−1

(
1

s(s2 + 1)

)
= L−1(

L(sin t)

s
) =

∫ t

0
sin τ dτ = 1− cos t.

Compute L−1
(

1
s2(s−1)

)
: we have

L−1

(
1

s
· 1

(s− 1)

)
=

∫ t

0
eτ dτ = et − 1.
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thus

L−1

(
1

s
· 1

s(s− 1)

)
=

∫ t

0
(eτ − 1) dτ = et − 1− t.

Laplace transform table:

L(f) =

∫ ∞
0

e−stf(t) dt = F (s);

L(ekt) =
1

s− k
;

L(tn) =
n!

sn+1
;

L(coswt) =
s

s2 + w2
, L(sinwt) =

w

s2 + w2
;

L(f ′) = sF (s)− f(0);

L(f ′′) = s2F (s)− sf(0)− f ′(0);

L(ektf(t)) = F (s− k);

L
(∫ t

0
f(τ) dτ

)
=
F (s)

s
.

Remark: Integration by parts is enough for all the above formulas!

8. USING STEP FUNCTIONS

Definition 8.1 (Step function). Let a ≥ 0, the step function u(t− a) is defined as follows

u(t− a) = 0, for 0 ≤ t < a, u(t− a) = 1, for t ≥ a.

In case a = 0 we call u(t) the Heaviside function.

Exercise: Draw the graph of f(t) = u(t− 1)− u(t− 3).

Exercise: Draw the graph of f(t) = (u(t)− u(t− π)) sin t.

Exercise: Draw the graph of f(t) = u(t) + u(t− 1) + · · ·+ u(t− n) + · · · .

Laplace transform of the step function:

L(u(t− a)) =

∫ ∞
0

e−stu(t− a) dt =

∫ ∞
a

e−st dt =

∫ ∞
a

d(
e−st

−s
) =

e−as

s
.

Exercise: Compare the graph of u(t− a)f(t− a) with the graph of f(t).

Theorem 8.2 (t-Shifting theorem).

L(u(t− a)f(t− a)) = e−asL(f).
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Proof. We have

L(u(t− a)f(t− a)) =

∫ ∞
a

e−stf(t− a) , dt.

Consider t− a = x, i.e. t = x+ a, then∫ ∞
0

e−s(x+a)f(x) d(x+ a) =

∫ ∞
0

e−s(x+a)f(x) dx = e−as
∫ ∞

0
e−sxf(x) dx.

The right hand side is just e−asL(f). �

Remark: Compare with the t-Shifting formula

L(eatf(t)) = L(f)(s− a).

Example: L−1(e−s 1
s−2) Since

1

s− 2
= L(e2t),

we have
L−1(e−s

1

s− 2
) = L−1(e−sL(e2t)).

Apply inverse Laplace transform to the above theorem, we get

L−1(e−sL(e2t)) = u(t− 1)e2(t−1).

Can you draw the graph of u(t− 1)e2(t−1) ?

RC-Circuit equation (see page 29 section 1.5 and page 93 section 2.9 of Kreyszig’s book): R,C
postive constants, i(t), e(t) functions:

Ri(t) +
1

C

∫ t

0
i(τ) dτ = e(t).

Apply the Laplace transform, we get

RI(s) +
1

C
· I(s)

s
= E(s),

i.e.

I(s) =
E(s)

R+ 1
Cs

=
s

s+ 1
RC

E(s)

R
.

Example: Consider
e(t) = u(t− 1)− u(t− 2), R = C = 1.

Then

E(s) =
e−s

s
− e−2s

s
,

Thus

I(s) =
e−s − e−2s

s+ 1
.

Since
L(e−t) =

1

s+ 1
,

we get
I(s) = e−sL(e−t)− e−2sL(e−t).

Thus
i(s) = u(t− 1)e−(t−1) − u(t− 2)e−(t−2).
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Example: Let

f(t) =
∞∑
n=0

u(t− n),

then

L(f) =

∞∑
n=0

L(u(t− n)) =

∞∑
n=0

e−ns

s
=

1

s

∞∑
n=0

(e−s)n,

Recall that
∞∑
n=0

rn =
1

1− r
,

thus

L

( ∞∑
n=0

u(t− n)

)
=

1

s(1− e−s)
.

9. DIRAC DELTA FUNCTION

Mathematical definition of the Delta function: δ(t− a) is a map:

δ(t− a) : f 7→ f(a).

Consider f(s) = e−st, then
f(a) = e−as.

Thus
δ(t− a)(e−st) = e−as.

Definition 9.1. We shall define Laplace transform of δ(t− a) as δ(t− a)(e−st), i.e.

L(δ(t− a)) = e−as.

Intuitive definition of the Delta function: δ(t− a) is defined by the following "formal" integral:∫ ∞
0

f(t)δ(t− a) dt = f(a).

Consider function

dk(t− a) =
1

k
, if a ≤ t ≤ a+ k; dk(t− a) = 0, otherwise,

then

lim
k→0

∫ ∞
0

f(t)dk(t− a) dt = lim
k→0

1

k

∫ a+k

a
f(t) dt = f(a).

Thus we can think of δ(t− a) as the limit of dk(t− a), i.e.∫ ∞
0

f(t)δ(t− a) dt = lim
k→0

∫ ∞
0

f(t)dk(t− a) dt = f(a).

In case f(t) = e−st, the above formula gives∫ ∞
0

e−stδ(t− a) dt = e−as.

That is the reason why we say that e−as is the Laplace transform of δ(t− a).
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Example: Relation with the step function:∫ t

0
δ(τ − a) dτ = u(t− a).

Application: solve
y′′ + y = δ(t− 1), y(0) = y′(0) = 0.

Apply Laplace transform to the equation, we get

s2Y + Y = e−s.

Thus

Y =
e−s

s2 + 1
.

Notice that
L(sin t) =

1

s2 + 1
,

thus
y = L−1(e−sL(sin t)) = u(t− 1) sin(t− 1).

10. LAPLACE TRANSFORM: USE KNOWN FORMULAS OR COMPUTE BY YOURSELF.

Let us compute Laplace transform of

f(t) = t, if 0 ≤ t ≤ a, f(t) = 0, if t > a.

Method 1: using L(u(t− a)f(t− a)) = e−asF (s). First, let us write

f(t) = (1− u(t− a))t = t− u(t− a)t = t− u(t− a)(t− a)− au(t− a).

Thus

L(f) = L(t)− L(u(t− a)(t− a))− aL(u(t− a)) =
1

s2
− e−as

s2
− ae

−as

s
.

Method 2: compute by yourself:∫ ∞
0

e−stf(t) dt =

∫ a

0
te−st dt =

∫ a

0
t d(

e−st

−s
) =

∫ a

0
d(t · e

−st

−s
)− e−st

−s
dt.

Thus

L(f) = a · e
−as

−s
+

1

s

∫ a

0
e−st dt.

Since ∫ a

0
e−st dt =

∫ a

0
d(
e−st

−s
) =

e−as

−s
− 0

−s
=

1

s
− e−as

s
,

we have

L(f) = a · e
−as

−s
+

1

s2
− e−as

s2
.

Please choose the method you like.

Sometimes it is easy to make a mistake when applying a formula: Please find where we go
wrong in the following computations:

u(t− π) sin t = u(t− π)(− sin(t− π))⇒ L(u(t− π) sin t) = − eπs

s2 + 1
.

Please compute by yourself if you think it is right !
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It is nice to apply formulas when solving differential–integral equations: Consider the follow-
ing equation for RLC-Circuit (see page 29 section 1.5 and page 93 section 2.9 of Kreyszig’s book):

Li′(t) +Ri(t) +
1

C

∫ t

0
i(τ) dτ = V (t).

Assume that
R = C = L = 1, V (t) = δ(t− 1), i(0) = 0.

Then we have

L(i′) + L(i) + L(

∫ t

0
i(τ)) = L(δ(t− 1)).

Apply the formulas, if you are lucky then you can get

sI − 0 + I +
I

s
= e−s,

i.e.

I =
e−s

s+ 1 + 1
s

= e−s
s

s2 + s+ 1
.

Then we know that

i(t) = L−1

(
e−s

s

s2 + s+ 1

)
.

Exercise: Compute L−1
(
e−s s

s2+s+1

)
.

11. CONVOLUTION, L(f ? g) = L(f) · L(g)

Let f(t), g(t) be two functions for t ≥ 0.

Definition 11.1 (Convolution of f and g).

(f ? g)(t) :=

∫ t

0
f(τ)g(t− τ) dτ, t ≥ 0.

Example: 1 ? t = t2

2 : we have

1 ? t =

∫ t

0
1 · (t− τ) dτ = t1 − t2

2
=
t2

2
.

Example: t ? 1 = t2

2 : we have

t ? 1 =

∫ t

0
τ dτ =

t2

2
.

In general, consider τ = t− u, we have∫ t

0
f(τ)g(t− τ) dτ =

∫ t

0
f(t− u)g(u) d(u) =

∫ t

0
g(u)f(t− u) du,

which gives
f ? g = g ? f.

Exercise:
et ? et = tet,
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f(t) ? 1 =

∫ t

0
f(τ) dτ,

f(t) ? δ(t) = f(t), f(t) ? δ(t− a) = u(t− a)f(t− a).

Theorem 11.2 (Laplace transform of convolution).

L(f ? g) = L(f) · L(g).

Proof. [Not assumed in this course]. We have

L(f ? g) =

∫ ∞
0

e−st
(∫ t

0
f(τ)g(t− τ) dτ

)
dt.

Since
{(t, τ) : 0 < t <∞, 0 < τ < t} = {(t, τ) : 0 < τ <∞, t > τ},

we have ∫ ∞
0

e−st
(∫ t

0
f(τ)g(t− τ) dτ

)
dt =

∫ ∞
0

f(τ)

(∫ ∞
τ

e−stg(t− τ) dt

)
dτ.

Notice that if we take t− τ = x then∫ ∞
τ

e−stg(t− τ) dt =

∫ ∞
0

e−s(τ+x)g(x) dx = e−sτL(g).

Now we have ∫ ∞
0

f(τ)

(∫ ∞
τ

e−stg(t− τ) dt

)
dτ =

(∫ ∞
0

f(τ)e−sτ dτ

)
· L(g),

which gives
L(f ? g) = L(f) · L(g).

�

Remark 1: Since f(t) ? δ(t− a) = u(t− a)f(t− a), the above theorem gives

L(f)e−as = L(u(t− a)f(t− a)).

Remark 2: Since

L(f ? (g ? h)) = L(f) · L(g ? h) = L(f) · L(g) · L(h) = L((f ? g) ? h),

we get f ? (g ? h) = (f ? g) ? h (can you prove this directly ?).

Compute: tm ? tn = m!n!
(m+n+1)! t

m+n+1, m, n = 0, 1, · · · The above theorem gives

tm ? tn = L−1L(tm ? tn) = L−1(
m!

sm+1
· n!

sn+1
).

Example L−1( 1
(s2+1)2

) = sin t−t cos t
2 . Since

L−1(
1

s2 + 1
) = sin t,

we have

L−1(
1

(s2 + 1)2
) = L−1(L(sin t) · L(sin t)) = sin t ? sin t =

∫ t

0
sin(τ) sin(t− τ) dτ.
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By (3), we have

2 sin(τ) sin(t− τ) = cos(τ − (t− τ))− cos(τ + (t− τ)) = cos(2τ − t)− cos t.

Thus ∫ t

0
sin(τ) sin(t− τ) dτ =

∫ t

0

cos(2τ − t)− cos t

2
dτ =

sin t− sin(−t)
4

− t cos t

2
,

and we have

L−1(
1

(s2 + 1)2
) =

sin t− t cos t

2
.

Example: differential equation: Consider

y′′ + y = sin t, y(0) = 0, y′(0) = 1.

Apply the Laplace transform, we get

s2Y − sy(0)− y′(0) + Y = L(sin t),

i.e.

s2Y − 1 + Y =
1

s2 + 1
.

We have

Y =
1

s2 + 1
+

1

(s2 + 1)2
.

By the above example, we have

y = sin t+
sin t− t cos t

2
=

3 sin t− t cos t

2
.

Example: Convolution equation: Consider

y −
∫ t

0
(t− τ)y(τ) dτ = 1.

Notiec that ∫ t

0
(t− τ)y(τ) dτ = y ? t.

Apply Laplace transform to the equation, we get

Y − Y · 1

s2
=

1

s
,

i.e.

Y =
1

s(1− s−2)
=

s

s2 − 1
=

1

2

(
1

s− 1
+

1

s+ 1

)
.

Thus

y =
et + e−t

2
= cosh t.

Application to non-homogeneous linear ODEs: Consider

y′′ + by′ + cy = r(t),

given y(0) and y′(0), we have

s2Y − sy(0)− y′(0) + b(sY − y(0)) + cY = R(s).
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Thus

Y =
1

s2 + bs+ c
·R(s) +

sy(0) + y′(0) + by(0)

s2 + bs+ c
:= K(s) ·R(s) +G(s).

Thus
y = k ? r + g.

Example: Consider
y′′ + y = r(t), y(0) = y′(0) = 0.

Apply the Laplcae transform, we have

s2Y + Y = L(r).

Thus

Y =
1

s2 + 1
· L(r),

which gives
y(t) = sin t ? r.

12. F ′(s) = L(−tf(t))

Theorem 12.1. Let F (s) = L(f). Then we have

F ′(s) = L(−tf(t)),

and ∫ ∞
s

F (u) du = L(
f(t)

t
), not assumed in this course.

Proof. Apply differential to

F (s) =

∫ ∞
0

e−stf(t) dt,

we get

F ′(s) =

∫ ∞
0

d(e−st)

ds
f(t) dt =

∫ ∞
0

e−st · (−tf(t)) dt = L(−tf(t)).

For the second formula, ∫ ∞
s

F (u) du =

∫ ∞
s

(∫ ∞
0

e−utf(t) dt

)
du,

change the order of integration, we get∫ ∞
s

(∫ ∞
0

e−utf(t) dt

)
du =

∫ ∞
0

f(t)

(∫ ∞
s

e−ut du

)
dt.

Thus the second formula follows from∫ ∞
s

e−ut du =

∫ ∞
s

d(
e−ut

−t
) =

e−st

t
.

�
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Compute L(t sin t) = 2s
(s2+1)2

: By the above theorem,

L(t sin t) = −(
1

s2 + 1
)′ =

2s

(s2 + 1)2
.

Compute: L−1(ln(1 + s−2)) = 2−2 cos t
t : Let ln(1 + s−2) = F (s) = L(f), then

F ′ = (ln(1 + s2)− ln(s2))′ =
2s

1 + s2
− 2

s
.

Thus

L−1(F ′) = 2 cos t− 2.

By the above theorem, we have

L−1(F ′) = −tf(t).

thus

f(t) =
2− 2 cos t

t
.

13. SYSTEM OF DIFFERENTIAL EQUATIONS

We shall only give an example:

y′1 = −y1 + y2; y′2 = −y1 − y2 + f(t), y1(0) = y2(0) = 0.

Apply the Laplace transform, we get

sY1 = −Y1 + Y2; sY2 = −Y1 − Y2 + F (s).

Thus

(s+ 1)Y1 − Y2 = 0;

and

Y1 + (s+ 1)Y2 = F (s).

The first one gives Y2 = (s+ 1)Y1, together with the second, we have

Y1 = F (s)(1 + (s+ 1)2)−1.

Thus

Y2 = F (s)(s+ 1)(1 + (s+ 1)2)−1.

Now we have

y1 = f(t) ? (e−t sin t), y2 = f(t) ? (e−t cos t).

when f(t) = e−t, we get

y1 =

∫ t

0
e−(t−τ)e−τ sin τ dτ = e−t(1− cos t), y2 = e−t sin t.
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14. COMPLEX FOURIER SERIES

Fix p > 0, if
f(x+ p) = f(x), ∀ x ∈ R,

then we call f a periodic function with period p.

Example: periodic function:

1. A polynomial is periodic if and only if it is a constant;
2. eλx is has period 2π if and only if

λ = in, n ∈ Z.

Recall that the main idea of this course is to represent a function f by eigenvectors eλx of the
derivative. If f has period 2π then we hope that those eigenvectors that have the same period 2π will
be enough to represent f . The main theorem in Fourier analysis is the following:

Theorem 14.1 (Fourier 1807). If f has period 2π and is smooth enough then we have

f(x) =
∑
n∈Z

cn e
inx, ∀ x ∈ R.

——The proof (see Page 63 in [3]) is not assumed in this course.

What does "smooth enough" mean? It means that f is piecewise smooth and

f(x0) =
f(x0+) + f(x0−)

2
,

if f is not smooth at x0.

How to compute cn ? We shall prove that

cn =
1

2π

∫ π

−π
f(x)e−inx dx.

In fact , by the above theorem, we have

1

2π

∫ π

−π
f(x)e−inx dx =

∑
m∈Z

cm
2π

∫ π

−π
eimxe−inx dx.

By (2), we have
eimxe−inx = ei(m−n)x.

If m = n then it gives ∫ π

−π
eimxe−inx dx =

∫ π

−π
1 dx = 2π.

Notice that if m 6= n then we have∫ π

−π
ei(m−n)x dx =

∫ π

−π
d(
ei(m−n)x

i(m− n)
) = 0.

Thus ∑
m∈Z

cm
2π

∫ π

−π
eimxe−inx dx = cn.
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Definition 14.2. We call
f(x) =

∑
n∈Z

cne
inx

the complex Fourier series of f and

cn :=
1

2π

∫ π

−π
f(x)e−inx dx, n ∈ Z,

the complex Fourier coefficients of f .

Remark: (not assumed in this course): The above theorem is also true for periodic delta function

f =
∑
k∈Z

δ(x− 2kπ),

then we have

cn =
1

2π

∫ π

−π
δ(x)e−inx dx =

1

2π
,

thus ∑
k∈Z

δ(x+ 2kπ) =
1

2π

∑
n∈Z

einx.

This formula says that the spectruml set of the periodic delta function is Z, which explains the Poisson
summation formula.

Example: Consider

f(x) = 1, 0 < x < π; f(x) = −1, −π < x < 0,

and
f(0) = f(π) = f(−π) = 0.

Then we know f is smooth enough and

2πcn =

∫ π

−π
f(x)e−inx dx =

∫ π

0
e−inx dx−

∫ 0

−π
e−inx dx.

Since ∫ π

0
e−inx dx =

∫ π

0
d(
e−inx

−in
) =

(−1)n − 1

−in
,

and ∫ 0

−π
e−inx dx =

∫ 0

−π
d(
e−inx

−in
) =

1− (−1)n

−in
,

we have

2πcn =
2(1− (−1)n)

in
,

i.e.

cn =
2

inπ
, n odde; cn = 0, n even.

Thus the complex fourier series of f is

f(x) =
∑
m∈Z

2

i(2m+ 1)π
ei(2m+1)x.
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15. (REAL) FOURIER SERIES

In the previous example, f is a real function, thus the complex Fourier series should also be a real
function. Let us verify this fact:

f(x) =
2

iπ

(
eix +

e3ix

3
+ · · ·

)
+

2

iπ

(
e−ix

−1
+
e−3ix

−3
+ · · ·

)
,

thus

f(x) =
2

iπ

(
(eix − e−ix) +

e3ix − e−3ix

3
+ · · ·

)
.

Since
einx − e−inx = 2i sinnx,

we get

f(x) =
4

π

(
sinx+

sin 3x

3
+ · · ·

)
,

In particular, it gives

1 = f(
π

2
) =

4

π

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
.

Thus

1− 1

3
+

1

5
− 1

7
+ · · · = π

4
,

which is a famous formula obtained by Leibniz in 1673 from geometric considerations.

Fourier series: In general, by the Euler formula

einx = cosnx+ i sinnx,

we know that ∑
cne

einx =
∑

cn(cosnx+ i sinnx),

which gives

f(x) = c0 +
∞∑
n=1

cn(cosnx+ i sinnx) +
∞∑
n=1

c−n(cosnx− i sinnx).

Thus we have

f(x) = c0 +
∞∑
n=1

((cn + c−n) cosnx+ i(cn − c−n) sinnx) ,

Recall that

(cn + c−n) =
1

2π

∫ π

−π
f(x)(e−inx + einx) dx =

1

π

∫ π

−π
f(x) cosnx dx,

and

i(cn − c−n) =
i

2π

∫ π

−π
f(x)(e−inx − einx) dx =

1

π

∫ π

−π
f(x) sinnx dx,

thus we get the following theorem:
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Theorem 15.1. If f has period 2π and is smooth enough then it has the following Fourier series
expansion

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx),

where a0, an, bn are the Fourier coefficients of f such that

a0 = c0 =
1

2π

∫ π

−π
f(x) dx,

and for n = 1, 2 · · · , we have

an =
1

π

∫ π

−π
f(x) cosnx dx,

and

bn =
1

π

∫ π

−π
f(x) sinnx dx.

Remark: We can aslo compute an, bn directly by using the following proposition.

Proposition 15.2. Put δmn = 1 if m = n and δmn = 0 if m 6= n then∫ π

−π
cosnx cosmxdx =

∫ π

−π
sinnx sinmxdx = πδmn, m, n = 1, 2, · · · ,

and ∫ π

−π
cosnx dx = 2πδn0,

∫ π

−π
cosnx sinmx = 0, m, n = 0, 1, 2, · · · .

Proof. Follows from the Euler formula

cosnx =
einx + e−inx

2
, sinnx =

einx − e−inx

2i
,

and ∫ π

−π
einxe−imx dx = 2πδmn.

�

Exercise: Using the above proposition to prove the formulas for an, bn.

Example: Consider

f(x) = 0, −π < x < 0; f(x) = x, 0 ≤ x < π.

Then

2πa0 =

∫ π

−π
f(x) dx =

∫ π

0
x dx =

π2

2
,

and

πan =

∫ π

−π
f(x) cosnx dx =

∫ π

0
x cosnx dx =

∫ π

0
x d(

sinnx

n
) = −

∫ π

0

sinnx

n
dx.

Since

−
∫ π

0

sinnx

n
dx =

∫ π

0
d(

cosnx

n2
) =

(−1)n − 1

n2
,

we get

a0 =
π

4
, a2m = 0, a2m−1 =

−2

(2m− 1)2π
, m = 1, 2 · · · .
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Moreover, we have

πbn =

∫ π

−π
f(x) sinnx dx =

∫ π

0
x sinnx dx =

∫ π

0
x d(
− cosnx

n
) =

π(−1)n+1

n
+

∫ π

0

cosnx

n
dx,

Notice that ∫ π

0

cosnx

n
dx =

∫ π

0
d(

sinnx

n2
) = 0,

thus

bn =
(−1)n+1

n
.

Thus

f(x) =
π

4
− 2

π

(
cosx+

cos 3x

32
+ · · ·

)
+

(
sinx− sin 2x

2
+

sin 3x

3
+ · · ·

)
.

Take x = 0 then we get

0 =
π

4
− 2

π
(1 +

1

32
+ · · · ),

i.e.

1 +
1

32
+

1

52
+ · · · = π2

8
.

Exercise: Use 1 + 1
32

+ 1
52

+ · · · = π2

8 to prove that

1 +
1

22
+

1

32
+ · · · = π2

6
.

16. ODD OR EVEN EXTENSION: FOURIER SINE AND COSINE SERIES

Definition 16.1. We say that f is odd if f(−x) = −f(x); f is even if f(−x) = f(x).

Example: For every positive integer n, we know that cosnx is even and sinnx is odd.

Application: If f is even then ∫ π

π
f(x) dx = 2

∫ π

0
f(x) dx.

If f is odd then ∫ π

π
f(x) dx = 0.

In particular, if f is odd then all

an =
1

π

∫ π

−π
f(x) cosnx dx = 0;

if f is even then all

bn =
1

π

∫ π

−π
f(x) sinnx dx = 0.

Thus we proved the following theorem:
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Theorem 16.2. Assume that f has period 2π and is smooth enough. If f is odd then it can be written
as a Fourier sine series

f(x) =
∞∑
n=1

bn sinnx, bn =
2

π

∫ π

0
f(x) sinnx dx.

If f is even then it can be written as a Fourier cosine series

f(x) =
1

π

∫ π

0
f(x) dx+

∞∑
n=1

an cosnx, an =
2

π

∫ π

0
f(x) cosnx dx.

Odd or Even extension: Let f be a function in (0, π). Then we can extend f to an odd function,
say fo such that

fo(−x) = −f(x), x ∈ (0, π);

we can also extend f to an even function, say fe such that

fe(−x) = f(x), x ∈ (0, π).

Example: Consider a function

f(x) = x, 0 < x <
π

2
; f(x) =

π

2
,
π

2
< x < π,

then we can write
fo(x) =

∑
bn sinnx,

and
fe(x) = a0 +

∑
an cosnx.

By the above theorem, we have

πa0 =

∫ π

0
f(x) dx =

∫ π
2

0
x dx+

∫ π

π
2

π

2
dx =

1

2
(
π

2
)2 +

π

2
(π − π

2
) =

3π2

8
,

and
π

2
am =

∫ π

0
f(x) cosmxdx =

∫ π
2

0
x cosmxdx+

∫ π

π
2

π

2
cosmxdx.

Since
∫ π

2
0 x cosmxdx can be written as∫ π

2

0
x d(

sinmx

m
) =

π

2m
sin

mπ

2
−
∫ π

2

0

sinmx

m
dx =

π

2m
sin

mπ

2
+

1

m2
(cos

mπ

2
− 1),

and ∫ π

π
2

π

2
cosmxdx = − π

2m
sin

mπ

2
,

we get

am =
2

m2π
(cos

mπ

2
− 1).

Thus

fe(x) =
3π

8
+

2

π

(
− cosx− 2 cos 2x

22
− cos 3x

32
− cos 5x

52
− · · ·

)
.
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For bn we have

π

2
bm =

∫ π

0
f(x) sinmxdx =

∫ π
2

0
x sinmxdx+

∫ π

π
2

π

2
sinmxdx.

Since
∫ π

2
0 x sinmxdx can be written as∫ π

2

0
x d(

cosmx

−m
) =
−π
2m

cos
mπ

2
+

∫ π
2

0

cosmx

m
dx =

−π
2m

cos
mπ

2
+

1

m2
sin

mπ

2
,

and ∫ π

π
2

π

2
sinmxdx = − π

2m
(cosmπ − cos

mπ

2
),

we have

bm =
2

π

(
1

m2
sin

mπ

2
− π

2m
cosmπ

)
=

2 sin mπ
2

m2π
− cosmπ

m

Thus

fo(x) =

(
2

π
+ 1

)
sinx+

(
0− 1

2

)
sin 2x+

(
−2

32π
+

1

3

)
sin 3x

+

(
0 +

1

4

)
sin 4x+

(
2

52π
+

1

5

)
sin 5x+ · · · .

17. APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS

Let f be a smooth enough function with period 2π. We hope to find an N -series,

FN :=
∑
|n|≤N

Cne
inx,

such that ∫ π

−π
|FN − f |2 dx

is minimal. The main idea is to use orthogonal decomposition.

Orthogonal Decomposition in vector space: Let S be a subspace of a vector space V , then we
can write a vector, say v, in V as

v = vS + vS⊥ ,

where vS lies in S and vS⊥ is orthoginal to S. Then it is very clear from the picture that vS is the
unique solution of the following extremal problem:

||vS − v|| = min{||u− v|| : u ∈ S}.
For a real proof it is enough to use

||u− v||2 = ||u− vS ||2 + ||vS⊥ ||2,
which implies that u = vS is the unique solution.

Orthogonal Decomposition in L2-space: In our case, we consider V as the space of complex
functions spanned by {einx}n∈Z with the following inner product structure:

(f, g) :=

∫ π

−π
f(x)g(x) dx, ||f ||2 := (f, f).
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Now S is the subspace of V spanned by einx, |n| ≤ N . Let f be a smooth enough function with
period 2π. Then we know that

||fS − f || = min{||u− f || : u ∈ S}
Thus FN = fS solves our extremal problem.

What is fS ? The simplest way is to use the complex Fourier series expansion

f(x) =
∑
n∈Z

cne
inx,

Put
fN =

∑
|n|≤N

cne
inx,

since {einx}n∈Z is an orthogonal basis of V we have

(fN , f − fN ) = 0,

which implies that
fN = fS .

Thus we have

Theorem 17.1. Complex Fourier series expansion solves the best trigonometric polynomial approxi-
mation problem.

Bessel’s inequality and Parseval’s identity: Notice that

||f ||2 = ||fN ||2 + ||f − fN ||2,
Thus we get the Bessel inequality

||f ||2 ≥ ||fN ||2,
i.e. ∫ π

−π
|f(x)|2 dx ≥ 2π ·

∑
|n|≤N

|cn|2,

and the Parseval identity ∫ π

−π
|f(x)|2 dx = 2π ·

∑
n∈Z
|cn|2.

Example: Consider the example in the end of section 14:

f(x) = 1, 0 < x < π; f(x) = −1, −π < x < 0,

and
f(0) = f(π) = f(−π) = 0.

We know that f has the following complex Fourier series expansion:

f(x) =
∑
m∈Z

2

i(2m+ 1)π
ei(2m+1)x.

Thus the Parseval identity gives

1

2π

∫ π

−π
|f(x)|2 dx = 1 =

∑
m∈Z

4

(2m+ 1)2π2
=

8

π2

(
1 +

1

32
+

1

52
+ · · ·

)
,
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which gives another proof of

1 +
1

32
+

1

52
+ · · · = π2

8
.

18. FOURIER TRANSFORM: BASIC FACTS

Definition 18.1. We call

f̂(w) :=
1√
2π

∫ ∞
−∞

f(x)e−iwx dx,

the Fourier transform of f and write f̂ = F(f).

Example: F1: Fourier transform of f(x) = 1 if |x| < 1 and f(x) = 0 otherwise:

f̂(w) :=
1√
2π

∫ ∞
−∞

f(x)e−iwx dx =
1√
2π

∫ 1

−1
e−iwx dx

if w 6= 0 then ∫ 1

−1
e−iwx dx =

∫ 1

−1
d(
e−iwx

−iw
) =

e−iw

−iw
− eiw

−iw
=

2 sinw

w
.

Notice that

lim
w→0

2 sinw

w
= 2 =

∫ 1

−1
dx = f̂(0).

Thus we can write

f̂(w) =
1√
2π

(
2 sinw

w

)
=

√
2

π

sinw

w
.

Example: F2: Fourier transform of f(x) = e−x if x > 0 and f(x) = 0 otherwise:

f̂(w) :=
1√
2π

∫ ∞
−∞

f(x)e−iwx dx =
1√
2π

∫ ∞
0

e−xe−iwx dx =
1√
2π
L(e−iwt)(1).

Recall that
L(e−iwt)(s) =

1

s+ iw
,

thus
f̂(w) =

1√
2π
· 1

1 + iw
.

From Complex Fourier series to inverse Fourier transform: Assume that f is smooth enough
in −N < x < N and f = 0 when |x| > N . For each L > N , let us define a periodic function fL
such that

fL(x) = f(x), |x| < L; fL(x+ 2L) = fL(x).

Then we know that

gL(x) = fL

(
Lx

π

)
,

has period p and is smooth enough. Thus

gL(x) =
∑

cne
inx, cn =

1

2π

∫ π

−π
gL(x)e−inx dx.

Thus
fL(x) = gL

(πx
L

)
=
∑

cne
inπx

L .
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Consider v = Lx
π , we can write

cn =
1

2π

∫ L

−L
fL(v)e−in

πv
L d(

πv

L
) =

1

2L

∫ ∞
−∞

f(v)e−in
πv
L dv =

√
2π

2L
f̂(
nπ

L
).

which gives

f(x) =

√
π

2

∑
n∈Z

f̂(nπL ) · ein
πx
L

L
.

Put
∆w =

π

L
,

then we have
f(x) =

1√
2π

∑
n∈Z

f̂(n∆w) · eix·n∆w∆w.

Assume that f̂(w)eixw is integrable in −∞ < x <∞. Let L goes to infty, the above formula gives

f(x) =
1√
2π

∫ ∞
−∞

f̂(w)eixw dw.

Definition 18.2 (Fourier inversion formula). If

(10) f(x) =
1√
2π

∫ ∞
−∞

f̂(w)eixw dw,

then we say that f(x) is the inverse Fourier transform of f̂(w) and write f = F−1(f̂).

When is the Fourier inversion formula (10) true ?

1. It is known that (see Page 141 Theorem 1.9 in [3] ) the Fourier inversion formula is true is true
if f is smooth and rapidly decreaing, in the sense that

sup
x∈R
|x|k|f (l)(x)| <∞, for every k, l ≥ 0,

where f (l) denotes the l-th derivative of f .

2. (Not assumed in this course) In general, assume that f is good: i.e. f is piecewise smooth,∫
R |f | dx <∞ and

f(x0) =
f(x0+) + f(x0−)

2
.

if f is not smooth at x0. Then Fourier inversion formula is true in the following sense (see Page 171,
Theorem 7.1 in [4])

f(x) = lim
L→∞

1√
2π

∫ L

−L
f̂(w)eixw dw.

Example: f(x) = e−
x2

2 is smooth and rapidly decreasing. Let us compute

f̂(w) :=
1√
2π

∫ ∞
−∞

e−
x2

2 e−iwxdx.

The idea is look at the derivative of f̂(w):

(11) f̂ ′(w) =
1√
2π

∫ ∞
−∞

e−
x2

2 (−ix)e−iwxdx = F(−ixf(x)).
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Notice that (e−
x2

2 )′ = e−
x2

2 (−x), thus

f̂ ′(w) =
i√
2π

∫ ∞
−∞

e−iwxd(e−
x2

2 ) =
−i√
2π

∫ ∞
−∞

e−
x2

2 d(e−iwx) = −wf̂(w).

Now we have (
f̂(w)e

w2

2

)′
= (−w + w)

(
f̂(w)e

w2

2

)
= 0.

Thus f̂(w)e
w2

2 is a constant, i.e.

f̂(w)e
w2

2 ≡ f̂(0)e0 = f̂(0).

Now we have
f̂(w) = f̂(0)e

−w2

2 = f̂(0)f(w)

The above theorem implies that

f(x) = F−1(f̂) = f̂(0)F−1(f) = f̂(0)f̂(−x) = (f̂(0))2f(x).

Since

f̂(0) =
1√
2π

∫ ∞
−∞

e−
x2

2 dx > 0,

we get
f̂(0) = 1, f̂ = f.

Remark: normal distribution: One may also use integration on R2 to compute the following
integral directly (see page 138 formula (6) in [3])

(12)
1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1.

Consider
u =
√
tx+ µ, t > 0, µ ∈ R,

the above formula implies the following classical formula in Gauss’s normal distribution theory

(13)
∫ ∞
−∞

1√
2πt

e−
(u−µ)2

2t du = 1,

where

(14) f(x |µ, t) :=
1√
2πt

e−
(u−µ)2

2t ,

is the probability density of the normal distribution with expectation µ and variance t.

Examples of Fourier inversion formula for "good" functions, not assumed in this course:

1. Consider the function in Example: F1, the Fourier inversion formula gives

f(x) = lim
L→∞

1√
2π

∫ L

−L

√
2

π

sinw

w
eixw dw = lim

L→∞

2

π

∫ L

0

sinw

w
coswxdx.

where f(x) = 1 if |x| < 1, f(x) = 0 if |x| > 1 and f(x) = 1
2 if |x| = 1. In particular, take x = 0 we

get
π

2
= lim

L→∞

∫ L

0

sinw

w
dx



31

2. Consider the function in Example: F2, the Fourier inversion formula gives

f(x) = lim
L→∞

1

2π

∫ L

−L

1

1 + iw
eixw dw,

where f(x) = e−x if x > 0, f(x) = 0 if x < 0 annd f(0) = 1
2 . Take x = 0, we have

1

2
= lim

L→∞

1

2π

∫ L

−L

1

1 + iw
dw =

1

π

∫ ∞
0

1

1 + w2
dw,

i.e. ∫ ∞
0

1

1 + w2
dw =

π

2
.

Exercise: Use w = tan θ := sin θ
cos θ to prove the last integreal.

19. FOURIER TRANSFORM OF DERIVATIVE AND CONVOLUTION, DISCRETE FOURIER
TRANSFORM ?

In this section, we only consider functions that are smooth and rapidly decreasing.
Following Berndtsson’s notes, the text book and the video (21) I will add discrete FT. For the FFT,

will ask Anne about discrete Fourier transform and fast Fourier transform.

20. PARTIAL DERIVATIVES AND GAUSS’S DIVERGENCE THEOREM

use the divergence theorem of Gauss to derive the wave equation and the the heat equation. A3.2,
10.7, 12.1, 12.2, 12.4.

Show that the normal distribution function satisfies the Heat equation. Define the heat kernel.

21. WAVE EQUATION

Separating variables, use of Fourier series 12.3

22. HEAT EQUATION, I

1. Separating variables, use of Fourier series 12.6
2. Steady case 12.6 , Laplace equation, Separating variables, use of Fourier series

23. HEAT EQUATION, II

3. Final 12.7. Modeling Very long bars, solution by Fourier integrals and transforms.

24. SOLUTION OF PDES BY LAPLACE TRANSFORMS OR REPETITION

Exam (current version):

1 (big problem). Laplace transform, solve second order ODE, use inverse transform.
2. (small). Compute complex Fourier series Given f, if f is sum of cn e inx, compute cn, if cos sin

compute an bn.
3. (big) Fourier transform of the gauss function, prove normal distribution integral one, prove that

it satisfies the heat equation.
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