Department of Mathematical
Sciences

1 Find a general solution of

$$
\begin{equation*}
y^{\prime \prime}+\omega^{2} y=\cos \beta t \tag{1}
\end{equation*}
$$

where $\beta \neq \omega$ are positive constants.
Hint: First find the steady state solution (i.e. determine the constants A, B below)

$$
y_{P}(t):=A \sin \beta t+B \cos \beta t,
$$

of (1). Then check (or use Laplace transform to show) that

$$
y_{H}=C_{1} \cos \omega t+C_{2} \sin \omega t
$$

is a general solution of the associated homogeneous equation $y^{\prime \prime}+\omega^{2} y=0$. The general solution of (1) is $y=y_{P}+y_{H}$.

2 Let

$$
x^{2}=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x},
$$

be the complex Fourier series expansion of x^{2} on $(-\pi, \pi)$.
a) Compute c_{n};
b) Use the Parseval identity for x^{2} to calculate the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.

3 Let

$$
x^{2}=a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos \left(\frac{k x \pi}{L}\right)+b_{k} \sin \left(\frac{k x \pi}{L}\right)\right),
$$

be the real Fourier series expansion of x^{2} on $(-L, L)$.
a) Compute a_{0}, a_{k}, b_{k};
b) Let $L=\pi$. Use the result in a) to compute the value of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}}
$$

Hint: Check the following fact: if

$$
f(x)=a_{0}+\sum_{k>0}\left(a_{k} \cos k x+b_{k} \sin k x\right),
$$

on $(-\pi, \pi)$ then by term-wise integration

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) d x=\pi a_{0}+\sum_{n=1}^{\infty} 2(-1)^{n+1} \frac{a_{2 n-1}}{2 n-1}
$$

4 Compute Fourier transforms of the following functions
a)

$$
f(x)= \begin{cases}0 & x \leq 0 \\ e^{-x} & x>0\end{cases}
$$

b)

$$
f(x)= \begin{cases}1-x^{2} & -1 \leq x \leq 1 \\ 0 & |x|>1\end{cases}
$$

c)

$$
f(x)= \begin{cases}T+x & -T \leq x<0 \\ T-x & 0 \leq x \leq T \\ 0 & |x|>T\end{cases}
$$

5 Recall the definition of convolution product in Fourier transform theory

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u
$$

We know that if $f(t)=g(t)=0$ on $(-\infty, 0)$ then

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

is compatible with the convolution product in Laplace transform theory.
a) For real numbers $a \neq b$, compute the following integral

$$
I(a, b):=e^{-a t} * e^{-b t}=\int_{0}^{t} e^{-a \tau} e^{-b(t-\tau)} d \tau
$$

b) Compute the following integral

$$
I(a, a):=e^{-a t} * e^{-a t}=\int_{0}^{t} e^{-a \tau} e^{-a(t-\tau)} d \tau
$$

Remark: If your computation is correct then you can see that $\lim _{b \rightarrow a} I(a, b)=$ $I(a, a)$ gives

$$
\lim _{b \rightarrow a} \frac{e^{-b t}-e^{-a t}}{b-a}=-t e^{-a t}
$$

which is equivalent to the following derivative formula of the exponential function

$$
\frac{d e^{-a t}}{d a}=(-t) e^{-a t}
$$

where we look at $e^{-a t}$ as a function of a for every fixed t.

