1 Compute the Laplace transforms of the following functions:
a) $f(t)=\sinh (A t), A$ is a constant;
b) $f(t)=\cosh (A t), A$ is a constant;
c) $f(t)=0$ if $0<t<\pi ; f(t)=1$ otherwise;
d) $f(t)=0$ if $0<t<\pi ; f(t)=\cos t$ otherwise;
e) $f(t)=t^{2} e^{t}$;
f) $f(t)=e^{t} \cos t$;
g) $f(t)=e^{t} \sin t$;

2 Solve the following initial value problems using Laplace transforms:
a) $y^{\prime \prime}-2 y^{\prime}+2 y=6 e^{-t} ; y(0)=0, y^{\prime}(0)=1$;

Hint: Find A, B, C such that

$$
\frac{A s+B}{s^{2}-2 s+2}+\frac{C}{s+1}=\frac{s+7}{\left(s^{2}-2 s+2\right)(s+1)},
$$

then use Exercise [1] f), g).
b) $y^{\prime \prime}+y=f(t), f(t)=0$ if $0<t<\pi ; f(t)=1$ otherwise; $y(0)=0, y^{\prime}(0)=0$;

Hint: Find A, B, C such that

$$
\frac{A s+B}{s^{2}+1}+\frac{C}{s}=\frac{1}{\left(s^{2}+1\right) s},
$$

then use Exercise [1] c), d).

3 By definition, a function f has period T if $f(t+T)=f(t)$. Show that the Laplace transform of a function f with period $T>0$ is given by

$$
\mathcal{L}(f)(s)=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t .
$$

4 ($4 \star$) Compare the Laplace transforms of the functions $h_{n}(t)=t^{n}, n=1,2,3, \ldots$, using the general property $\mathcal{L}\left(h_{m} f\right)(s)=(-1)^{m} \frac{d^{m} \mathcal{L}(f)}{d s^{m}}(s)$. What can be said about the Laplace transform $\mathcal{L}\left(\frac{f}{h_{1}}\right)(s)$?

