

Department of Mathematical Sciences

# Examination paper for TMA4125/30/35 Matematikk 4N/D

# Solution

# Academic contact during examination:

Phone:

## Examination date: 7. August, 2023

Examination time (from-to): 09:00-13:00

# Permitted examination support material: C.

One sheet A4 paper, approved by the department (yellow sheet, "gul ark") with own handwritten notes.

Certain simple calculators.

## Other information:

- All answers have to be justified, and they should include enough details in order to see how they have been obtained.
- Good Luck! | Lykke til!

Language: English Number of pages: 14 Number of pages enclosed: 0

Checked by:

#### **Problem 1.** (Fixed-point iterations)

Consider the nonlinear equation  $x - \sqrt{\sin x} = 0$ , with  $x \in [\pi/6, \pi/2]$ , for which we can write the fixed-point iteration as

$$x_{k+1} = \sqrt{\sin x_k} \, .$$

- a) Show that the nonlinear equation has a unique solution *r* in the interval  $[\pi/6, \pi/2]$ , and that the fixed-point iterations above will converge to *r* for any initial guess  $x_0$  in that interval.
- b) Starting from  $x_0 = \pi/2$ , find an upper bound for the error  $|x_{k+1} r|$  after k = 60 iterations.

Important: you are *not* being asked to perform these iterations!

#### Solution.

- a) We have the fixed-point equation x = g(x), where  $g(x) = \sqrt{\sin x}$ . The fixed-point theorem, which guarantees the existence of the unique root *r* and also the convergence of the fixed-point iterations, depend on properties of the function g(x). We need to verify the following conditions:
  - 1) There exists a positive constant L < 1 so that  $|g(x)'| \le L$  for all  $x \in [\pi/6, \pi/2]$
  - 2) The function g(x) stays within the interval of interest, that is:  $g(x) \in [\pi/6, \pi/2]$  for all  $x \in [\pi/6, \pi/2]$ .

To check the first one, we must differentiate g(x):

$$g(x) = (\sin x)^{\frac{1}{2}} \implies g'(x) = \frac{1}{2}(\sin x)^{\frac{1}{2}-1}(\sin x)' = \frac{\cos x}{2\sqrt{\sin x}}.$$

Since  $\cos x > 0$  for all  $x \in [\pi/6, \pi/2]$ , we have simply

$$|g'(x)| = g'(x) = \frac{\cos x}{2\sqrt{\sin x}},$$

which is a **decreasing** function for  $x \in [\pi/6, \pi/2]$ , since the numerator is decreasing and the denominator is increasing (in the interval considered). Because |g'(x)|

is decreasing, we know that its maximum value in the interval  $x \in [\pi/6, \pi/2]$  is simply  $|g'(\pi/6)|$ . Hence:

$$|g'(x)| \le |g'(\pi/6)| = \frac{\sqrt{3}/2}{2\sqrt{1/2}} = \frac{\sqrt{6}}{4} < 1.$$

The first condition of the theorem is therefore met, with  $L = \sqrt{6}/4 \approx 0.612$ .

Then, since g(x) is clearly an **increasing function**, we know that its minimum and maximum values within the interval happen for  $x = \pi/6$  and  $x = \pi/2$ , respectively:

$$g(\pi/6) \le g(x) \le g(\pi/2) \implies \sqrt{2/2} \le g(x) \le 1$$
.

Having  $g(x) \in [\sqrt{2}/2, 1]$  implies, in particular,  $g(x) \in [\pi/6, \pi/2]$ , since the interval  $[\pi/6, \pi/2]$  contains  $[\sqrt{2}/2, 1]$ . The last condition is thus fulfilled, which shows that the fixed-point iterations will convergence to the root r, for any initial guess  $x_0 \in [\pi/6, \pi/2]$ .

b) As a consequence of the fixed-point theorem, we have the a-priori error estimate

$$|x_{k+1}-r| \le \frac{L^{k+1}}{1-L}|g(x_0)-x_0|.$$

Therefore, for k = 60 we have

$$|x_{61} - r| \le \frac{(\sqrt{6}/4)^{60+1}}{1 - \sqrt{6}/4} |\sqrt{\sin \pi/2} - \pi/2| \approx 1.5 \times 10^{-13}.$$

If the student found the wrong constant L in item a), used this wrong value in b) but proceeded correctly, that is OK for item b). It is also OK if the student did the calculations considering k + 1 = 60 instead of k = 60.

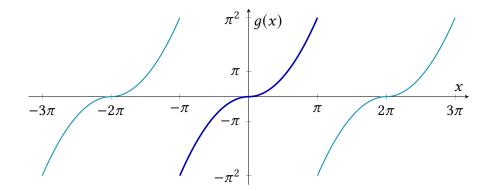
#### Problem 2. (Fourier Series)

The function  $g(x) = x^2$  defined on the interval  $[0, \pi]$  is to be extended to an odd function f with period  $2\pi$ .

Sketch the function f on at least 3 periods and compute the coefficients of the real Fourier series of f.

#### Solution.

The sketch looks like



We can use that the odd extension is an odd function. Hence  $a_n = 0$  for n = 0, 1, 2, ..., (1 P.)

For the  $b_n$  we use, that integrating over half an interval and multiplying that by 2 yields the result. Hence We get

$$b_n = \frac{2}{\pi} \int_0^{\pi} g(x) \sin(nx) dx = \frac{2}{\pi} \int_0^{\pi} x^2 \sin(nx) dx$$

We apply integration by parts. We have in  $\int fg' dx = fg - \int f'g dx$  here with  $f(x) = x^2$ and  $g'(x) = \sin(nx)$  so f'(x) = 2x and  $g(x) = -\frac{1}{n}\cos(nx)$  We obtain (2 P.)

$$b_n = \frac{2}{\pi} \left( -\frac{x^2}{n} \cos(nx) \Big|_0^{\pi} + \int_0^{\pi} \frac{2x}{n} \cos(nx) dx. \right)$$

We perform another integration by parts on the second term with f(x) = x and  $g'(x) = \frac{1}{n} \cos(nx)$  and hence f'(x) = 1 and  $g(x) = \frac{2}{n^2} \sin(nx)$ . We obtain (2 P.)

$$b_n = \frac{2}{\pi} \left( -\frac{\pi^2}{n} \cos(n\pi) + 0 + \frac{x}{n^2} \sin(nx) \Big|_0^\pi - \int_0^\pi \frac{2}{n^2} \sin(nx) dx \right)$$

We keep the first term, the central term vanishes since  $sin(n\pi) = sin(0) = 0$  and we can compute the anti-derivative of the last integral (2 P.)

$$b_n = \frac{2}{\pi} \left( -\frac{\pi^2}{n} \cos(n\pi) + \frac{2}{n^3} \cos(nx) \Big|_0^\pi \right) = \frac{2}{\pi} \left( -\frac{\pi^2}{n} \cos(n\pi) + \frac{2}{n^3} \cos(n\pi) - \frac{2}{n^3} \right)$$
$$= \frac{2\pi}{n} (-1)^{n+1} + \frac{4}{\pi n^3} (-1)^n - \frac{4}{\pi n^3}$$

The last simplification is not necessary to get the points for this computation.

#### Problem 3. (Discrete Fourier Transform)

In this task we consider the discrete Fourier Transform (DFT) for signals of length n = 8. We denote by  $x_j = 2\pi j/8$ , j = 0, ..., 7, corresponding sampling points on  $[0, 2\pi)$ .

- a) We consider the function  $f(x) = e^{3ix}$ ,  $x \in [0, 2\pi)$ , and its sampling values  $f_j = f(x_j)$  at the points  $x_j$  from above. Compute the discrete Fourier transform  $\hat{\mathbf{f}}$  of the vector  $\mathbf{f} = (f_0, \dots, f_7)$ .
- b) Let  $\hat{\mathbf{g}} = (0, i, 0, 0, 0, 0, 0, -i)$  be a result of a DFT. Is the original signal  $\mathbf{g} = \mathcal{F}_8^{-1} \hat{\mathbf{g}}$  real-valued?

## Solution.

a) We can easily read off the Fourier coefficients  $c_k(f) = \begin{cases} 1 & \text{if } k = 3, \\ 0 & \text{else.} \end{cases}$  (1 P.)

Since *f* is bandlimited with  $N = 3 < 4 = \frac{8}{2}$  the Fourier transform of length n = 8 is exact, i.e.  $\hat{\mathbf{f}} = (c_0(f), c_1(f), c_2(f), c_3(f), c_{-4}(f), c_{-3}(f), c_{-2}(f), c_{-1}(f)) = (0, 0, 0, 1, 0, 0, 0, 0).$ 

Alternatively the same argument can be done mentioning the Aliasing Lemma.(4 P.)

b) Similarly to a) we can associate the coefficients to the Fourier coefficients of a bandlimited function g(x) with  $c_k(g) = 0$  for  $k \neq \pm 1$  and  $c_{\pm 1}(g) = \pm \frac{1}{8}i$ , where the factor  $\frac{1}{8}$  already anticipates the inverse DFT.

This in turn yields that *g* is (up to a constant scaling) a sine function. To be precise the vector **g** is obtained by sampling  $g(x) = \frac{1}{4} \sin(x)$ .

Alternatively one can also compute all 8 terms (consisting of 2 summands each) by hand and argue, without even computing these exactly, that the exponentials cancel out w.r.t. their complex components. (5 P.)

The exact values of **g** are  $\mathbf{g} = \frac{1}{4} \left( 0, \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}, -1, -\frac{1}{\sqrt{2}} \right)$ 

If the students are exact with their Fourier transform and use the unitary one, a factor of  $\frac{2}{\sqrt{8}} = \frac{1}{\sqrt{2}}$  is also ok. With the physical definition (the 1/8 upfront the DFT instead of its inverse) even the factor 2.

## Problem 4. (Laplace transform)

Using the Laplace transform, solve the third-order ordinary differential equation

$$y^{\prime\prime\prime\prime}-y^{\prime}=1,$$

with initial conditions y(0) = 0, y'(0) = 0 and y''(0) = 1.

### Solution.

Applying the Laplace transform to the ODE, we get

$$s^{3}Y(s) - y''(0) - sY(s) = \frac{1}{s},$$

that is,

$$(s^{3}-s)Y(s) = 1 + \frac{1}{s} = \frac{s+1}{s},$$

which gives us

$$Y(s) = \frac{s+1}{s^2(s^2-1)} = \frac{s+1}{s^2(s-1)(s+1)} = \frac{1}{s^2(s-1)}$$

Decomposition of Y(s) into partial fractions is done via

$$Y(s) = \frac{1}{s^2(s-1)} = \frac{A}{s-1} + \frac{B}{s} + \frac{C}{s^2}.$$

To find the coefficients, we have to satisfy

$$1 = As^{2} + Bs(s - 1) + C(s - 1)$$
 for all s.

In particular, setting s = 1 gives immediately A = 1, while using s = 0 results in C = -1, so that B = -1 (alternatively, one can solve a  $3 \times 3$  linear system to find A, B, C, which of course will give the same values). Hence:

$$Y(s) = \frac{1}{s-1} - \frac{1}{s} - \frac{1}{s^2} \implies y(t) = e^t - 1 - t.$$

### Problem 5. (Convolution)

Using the Laplace transform, solve the integro-differential equation

$$y'(t) - 5 \int_0^t y(t-\tau) \cos \tau \, d\tau = 8 \sin t$$
,

with the initial condition y(0) = 0.

Page 6 of **14** 

#### Solution.

This equation can be written as  $y'(t) - 5y(t) * \cos t = 8 \sin t$ . Applying the Laplace transform to both sides, we get

$$[sY(s) - y(0)] - 5Y(s)\frac{s}{s^2 + 1} = \frac{8}{s^2 + 1}.$$

We therefore have

$$\left[s\left(1-\frac{5}{s^2+1}\right)\right]Y(s) = \frac{8}{s^2+1} \implies s\left[\frac{s^2-4}{s^2+1}\right]Y(s) = \frac{8}{s^2+1},$$

that is,

$$Y(s) = \frac{8}{s(s^2 - 4)} = \frac{8}{s(s - 2)(s + 2)}$$

Decomposition of Y(s) into partial fractions is done via

$$Y(s) = \frac{8}{(s-2)(s+2)s} = \frac{A}{s-2} + \frac{B}{s+2} + \frac{C}{s}.$$

To find the coefficients, we have to satisfy

$$8 = As(s+2) + Bs(s-2) + C(s-2)(s+2)$$
 for all s.

In particular, setting s = 0 gives immediately C = -2, while using  $s = \pm 2$  results in A = B = 1 (alternatively, one can solve a  $3 \times 3$  linear system to find A, B, C, which of course will give the same values). Hence:

$$Y(s) = \frac{1}{s-2} + \frac{1}{s+2} - \frac{2}{s} \implies y(t) = e^{2t} + e^{-2t} - 2 = 2(\cosh 2t - 1).$$

#### **Problem 6.** (Understanding Code)

Consider the following Python code for a certain numerical method:

```
import numpy as np
1
2
3 def f(x):
       return 2-2*x
4
5
6 def Method(f,a,b,N):
       x = np.linspace(a,b,N+1)
7
8
       S = 0
       for i in range(N):
9
           S = 0.5*(x[i+1] - x[i])*(f(x[i+1]) + f(x[i]))
10
11
       return S
12
```

If the method had been implemented correctly, running Method(f, 0, 1, N) should return an output equal to 1.0 regardless of the input N. However, there is a **mistake on one line of the code** that prevents this. In fact, running Method(f, 0, 1, 2), Method(f, 0, 1, 4) and Method(f, 0, 1, 10), for example, will return 0.25, 0.0625 and 0.01, respectively.

- a) Find the mistake and rewrite the incorrect line so as to have the correct implementation.
- b) Once the mistake is fixed, what numerical method will be effectively implemented?

#### Solution.

a) The composite trapezoidal rule consists in doing

$$S = \sum_{i=0}^{N} \frac{f(x_{i+1}) + f(x_i)}{2} (x_{i+1} - x_i),$$

but the implementation presented ignores the sum and only delivers the integral over the last sub-interval  $(x_i, x_{i+1})$ . We therefore have to correct line 10 to S = S + .5\*(x[i+1]-x[i])\*(f(x[i+1])+f(x[i])) or, even shorter, to S + .5\*(x[i+1]-x[i])\*(f(x[i+1])+f(x[i])).

b) The (composite) trapezoidal rule.

#### **Problem 7.** (Separation of Variables)

Find all non-trivial solutions of the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u$$
 where  $0 < x < \pi$  and  $t > 0$ 

that are of the form u(x, t) = F(x)G(t) and that satisfy the boundary conditions

$$u(0,t) = 0$$
 and  $u(\pi,t) = 0$  for  $t > 0$ .

Solution.

Page 8 of 14

We insert the equation u(x, t) = F(x)G(t) into the PDE and obtain the equation

$$F(x)\dot{G}(t) = F''(x)G(t) + F(x)G(t).$$

Dividing by G(t) and F(x) yields the equation

$$\frac{\dot{G}(t)}{G(t)} = \frac{F''(x) + F(x)}{F(x)} = k,$$

where k is some constant. From this we obtain the two ODEs

$$F'' = (k-1)F$$
$$\dot{G} = kG$$

We consider now the possible solutions of the equation for F. Thus we have three possibilities:

k > 1: Denote  $p = \sqrt{k-1} > 0$ . Then we have the solution

$$F(x) = Ae^{px} + Be^{-px}.$$

From the boundary condition F(0) = 0 we get the condition A = -B, which implies that  $F(x) = A(e^{px} - e^{-px})$ . From the boundary condition  $F(\pi) = 0$ , we now obtain that

$$A(e^{p\pi}-e^{-p\pi})=0,$$

which is only possible if A = 0, as  $e^{p\pi} > 1$  and  $e^{-p\pi} < 1$ . Thus we only end up with the trivial solution.

k = 1: Here we have the ODE F'' = 0, which has the general solution

$$F(x) = A + Bx$$

From the boundary condition F(0) = 0 we get that A = 0 and thus F(x) = Bx. Now the condition  $F(\pi) = 0$  implies that also B = 0. Thus we obtain, again, only trivial solutions.

k < 1: Denote  $p = \sqrt{1 - k} > 0$ . Then we have the solution

$$F(x) = A\cos(px) + B\sin(px).$$

From the boundary condition F(0) = 0 we obtain that A = 0 and thus  $F(x) = B \sin(px)$ . Now the boundary condition  $F(\pi) = 0$  implies that either B = 0 (which

gives the trivial solution) or  $sin(p\pi) = 0$ . The latter is satisfied if p = n for some n = 1, 2, ...

We thus obtain the non-trivial solutions

$$F(x) = B\sin(nx) \qquad \text{for } n = 1, 2, \dots$$

Since

$$k = 1 - p^2 = 1 - n^2,$$

the corresponding solution for G is

$$G(t) = Ce^{kt} = Ce^{(1-n^2)t}.$$

In total, we have the non-trivial solutions

$$u_n(x,t) = Ce^{(1-n^2)t} \sin(nx)$$
 for  $n = 1, 2, ...$ 

#### **Problem 8.** (Solution to a PDE)

The equation

$$\frac{\partial^2 u}{\partial t^2} + 7u = \frac{\partial^2 u}{\partial x^2} \qquad \text{for } 0 < x < \pi \text{ and } t > 0$$

with boundary conditions

$$u(0,t) = 0$$
 and  $u(\pi,t) = 0$  for  $t > 0$ 

has the general solution

$$u(x,t) = \sum_{n=1}^{\infty} \sin(nx) \Big( A_n \cos(t\sqrt{7+n^2}) + B_n \sin(t\sqrt{7+n^2}) \Big).$$

(You don't have to show this!)

Use this information to find the solution that additionally satisfies the initial conditions

$$u(x,0) = \sin(x)$$
 and  $\frac{\partial u}{\partial t}(x,0) = 2\sin(3x)$  for  $0 < x < \pi$ .

## Solution.

Inserting t = 0 into the general solution, we obtain that

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin(nx).$$

Now the initial condition states that this should be equal to

$$u(x,0) = \sin(x).$$

By comparing the coefficients in front of the sine functions, we see that

$$A_1 = 1$$
, and  $A_n = 0$  else.

Next we differentiate the general solution with respect to t, which gives

$$\frac{\partial u}{\partial t}(x,t) = \sum_{n=1}^{\infty} \sin(nx) \left( -A_n \sqrt{7+n^2} \sin(t\sqrt{7+n^2}) + B_n \sqrt{7+n^2} \cos(t\sqrt{7+n^2}) \right)$$

In particular, we obtain for t = 0 that

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} B_n \sqrt{7 + n^2} \sin(nx).$$

The second initial condition states that this should be equal to

$$\frac{\partial u}{\partial t}(x,0) = 2\sin(3x)$$

Again, we have to compare the coefficients in front of the sine functions. For n = 3 we obtain the equation

$$B_3\sqrt{7+3^2} = 2,$$

which simplifies to

$$B_3=\frac{1}{2},$$

and all other coefficients are equal to o.

Thus the solution with these initial conditions reads

$$u(x,t) = \sin(x)\cos(\sqrt{8}t) + \frac{1}{2}\sin(3x)\sin(4t).$$

Page 11 of 14

Problem 9. (Numerical Solution of PDEs)

Consider the heat equation

$$u_t(x,t) = \frac{1}{4}u_{xx}(x,t)$$
 for  $0 \le x \le 1$  and  $t \ge 0$ ,

with boundary conditions

 $u(0,t) = \cos(t), \quad u(1,t) = 0, \quad \text{for } t \ge 0,$ 

and initial condition

$$u(x, 0) = 1 - x$$
 for  $0 \le x \le 1$ .

Set up an explicit finite difference scheme for this equation. Use the step length h = 0.25 in the spatial direction, and the step length k = 0.1 in the temporal direction.

Use your finite difference scheme in order to find an approximation to u(0.25, 0.2).

## Solution.

• Discretisation of the domain and equation:

We start by defining the grid points  $x_i = ih = 0.25i$ , i = 0, ..., 4, and  $t_n = nk = 0.1n$ , n = 0, 1, 2, ...

Next we use that

$$u_t(x_i, t_n) = \frac{u(x_i, t_{n+1}) - u(x_i, t_n)}{k} + O(k),$$
  
$$u_{xx}(x_i, t_n) = \frac{u(x_{i+1}, t_n) - 2u(x_i, t_n) + u(x_{i-1}, t_n)}{h^2} + O(h^2).$$

We now ignore the error terms, approximate  $U_i^n \approx u(x_i, t_n)$ , and insert the finite difference approximations in the PDE. Then we obtain the equation

$$\frac{U_i^{n+1} - U_i^n}{k} = \frac{1}{4} \frac{U_{i-1}^n - 2U_i^n + U_{i+1}^n}{h^2}.$$

Solving this for  $U_i^{n+1}$ , we obtain the expressions

$$U_i^{n+1} = U_i^n + \frac{k}{4h^2} \left( U_{i-1}^n - 2U_i^n + U_{i+1}^n \right) = 0.2U_i^n + 0.4(U_{i-1}^n + U_{i+1}^n)$$
(1)

for *i* = 1, 2, 3, and *n* = 1, 2, 3, ..., where we have used that  $k/4h^2 = 0.1/0.25 = 0.4$ .

Page 12 of 14

• Boundary conditions:

For i = 1 and i = 3, the expressions above depend on  $U_0^n$  and  $U_4^n$ , which we need to define using the boundary conditions  $u(0, t) = \cos(t)$  and u(1, t) = 0. From these we obtain that

$$U_0^n = \cos(t_n) = \cos(0.1n)$$
 and  $U_4^n = 0$ ,

which we use in (1)

• Initial conditions:

For n = 0 we make use of the initial condition u(x, 0) = 1 - x, which yields

$$U_i^0 = 1 - x_i = 1 - 0.25i$$
 for  $i = 0, ..., 4$ .

• *Complete algorithm:* 

Summarising everything above, we obtain the following method:

Initialise: Define

$$U_i^0 = 1 - 0.25i$$
 for  $i = 1, 2, 3$ .

*Iteration:* For n = 1, 2, ... define

$$U_0^n = \cos(0.1n)$$
 and  $U_4^n = 0$ ,

and compute

$$U_i^{n+1} = 0.2U_i^n + 0.4(U_{i-1}^n + U_{i+1}^n)$$
 for  $i = 1, 2, 3$ .

Finally, we use this method for approximating u(0.25, 0.2). We are using a step length h = 0.25 in spatial direction and a step length k = 0.1 in temporal direction, and thus  $(0.25, 0.2) = (h, 2k) = (x_1, t_2)$ . That is, we have the approximation  $u(0.25, 0.2) \approx U_1^2$ , which means that we have to compute  $U_1^2$  with the algorithm defined above. We initialise

$$U_0^0 = 1$$
,  $U_1^0 = 0.75$ ,  $U_2^0 = 0.5$ ,  $U_3^0 = 0.25$ ,  $U_4^0 = 0$ .

Next we compute the values  $U_i^1$  for i = 1, 2, 3 (we actually do not need  $U_3^1$  for the computation of  $U_1^2$ ):

$$\begin{split} U_1^1 &= 0.2U_1^0 + 0.4(U_0^0 + U_2^0) = 0.75, \\ U_2^1 &= 0.2U_2^0 + 0.4(U_1^0 + U_3^0) = 0.5, \\ U_3^1 &= 0.2U_3^0 + 0.4(U_2^0 + U_4^0) = 0.25. \end{split}$$

Finally, we set  $U_0^1 = \cos(0.1)$  and compute

$$U_1^2 = 0.2U_1^1 + 0.4(U_0^1 + U_2^1) = 0.15 + 0.4\cos(0.1) + 0.2 \approx 0.748.$$

Thus

$$u(0.25, 0.2) \approx U_1^2 \approx 0.748.$$

#### Problem 10. (Numerical Methods for ODEs)

a) Rewrite the second order differential equation

u'' + 8u' + 7u = 0, u(0) = 1, u'(0) = 1/2

as a system of first order differential equations.

- b) Apply Euler's method to the system, and perform one step with step size h = 0.1.
- c) What is the maximum step size *h* for which we can get a stable solution when Euler's method is applied to the system of ODEs from point a).

#### Solution.

a) Let  $y_1 = u$  and  $y_2 = u'$ . The system becomes

$$y'_1 = y_2,$$
  $y_1(0) = 1,$   
 $y'_2 = -7y_1 - 8y_2,$   $y_2(0) = 1/2.$ 

b) Euler's method is given by

$$y_{n+1} = y_n + hf(t_n, y_n),$$

which in our case becomes

$$y_{1,1} = 1 + 0.1 \cdot 0.5 = 1.05,$$
  
 $y_{2,1} = 0.5 + 0.1 \cdot (-7 \cdot 1.0 - 8 \cdot 0.5) = -0.6.$ 

c) This is an issue of linear stability analysis.

The systems of equations can be written as

$$y' = Ay$$
, with  $A = \begin{bmatrix} 0 & 1 \\ -7 & -8 \end{bmatrix}$ .

The matrix *A* has eigenvalues -1 and -7.

If the method is applied to the linear scalar test equation  $y' = \lambda y$ , where  $\lambda$  represents one of the eigenvalues of *A*, we get

$$y_{n+1} = R(z)y_n$$
,  $R(z) = 1 + z$  with  $z = \lambda h$ .

The numerical solution is stable if the step size *h* is chosen such that  $|R(z)| \le 1$ , that is  $-2 \le z \le 0$ . For  $\lambda = -1$  this means  $h \le 2$ , for  $\lambda = -7$ , it gives  $h \le 2/7 = 0.2857 \cdots$ . Thus, stepsizes has to be chosen in the interval  $0 < h \le 2/7$  for the solution to be stable.