Problem 1.

Using the Laplace transform, solve the ordinary differential equation

$$
2 y^{\prime \prime}+y^{\prime}-y=3 u(t-2)
$$

with initial conditions $y(0)=y^{\prime}(0)=0$, and with u denoting the Heaviside function.

Problem 2.

Using the Laplace transform, solve the integro-differential equation

$$
y^{\prime}(t)+5 \int_{0}^{t} \mathrm{e}^{2 \tau} y(t-\tau) \mathrm{d} \tau=\mathrm{e}^{2 t}
$$

with the initial condition $y(0)=0$.

Problem 3.

The function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)=2+x \quad \text { for } 0 \leq x \leq 1
$$

is to be extended to an odd function g with period 2. Sketch the graph of g on the interval $[-3,3]$ and compute the Fourier series of g.

Problem 4.

Find all non-trivial solutions of the equation

$$
\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}} \quad \text { where }-1<x<1 \quad \text { and } t>0
$$

that are of the form $u(x, t)=F(x) G(t)$ and that satisfy the boundary conditions

$$
u(-1, t)=0 \quad \text { and } \quad u(1, t)=0 \quad \text { for } t>0 .
$$

Problem 5.

Use the Fourier transform in order to solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+u \quad \text { for } x \in \mathbb{R} \text { and } t>0
$$

with initial conditions

$$
u(x, 0)= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Problem 6. (4N only)
Consider the three-point finite-difference formula below:

$$
\frac{-3 u(x)+4 u(x+h)-u(x+2 h)}{2 h}=u^{\prime}(x)+\mathcal{O}\left(h^{2}\right) .
$$

Using a computer with machine accuracy $\varepsilon>0$, the approximation of u^{\prime} will have, in addition to the truncation error $O\left(h^{2}\right)$, a rounding error dependent on ε and h. These two errors will have comparable orders of magnitude when

$$
h=O\left(\varepsilon^{p}\right), \quad p>0
$$

Determine the value of p.

Problem 6. (4D only)
Classify the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial u}{\partial x}
$$

as linear or nonlinear.

Show that, for given constants a and b,

$$
u(x, t)=a+\frac{2}{a t+x+b}
$$

is a solution of the PDE.

Problem 7.

Consider the fixed-point equation $x=\sqrt{x}+2$, which has a unique real solution r.
a) Show that the fixed-point iterations $x_{k+1}=\sqrt{x_{k}}+2$ will converge to r, for any initial guess $x_{0} \in[1,9]$.
b) Starting from $x_{0}=2$, determine how many iterations, at most, will be needed until having

$$
\left|x_{k+1}-r\right| \leq 2^{-10} .
$$

Important: you are not being asked to perform these iterations!

Problem 8.

A Runge-Kutta method for solving a scalar ODE, $y^{\prime}=f(t, y)$, is implemented, the main block of the code is given below:

```
for n in range(N):
    yn = y[n]
    tn = t[n]
    k1 = f(tn, yn)
    k2 = f(tn+0.5*h,yn+0.5*h*k1)
    k3 = f(tn+h, yn+0. 5*h*(k1+k2))
    y[n+1] = yn+h/6*(k1+4*k2+k3)
```

Write down the Butcher-tableau, and determine the order of the method.

Problem 9.

We are given the following embedded Runge-Kutta pair:

0	0	0	0
$1 / 2$	$1 / 2$	0	0
$3 / 4$	0	$3 / 4$	0
	0	1	0
	$2 / 9$	$1 / 3$	$4 / 9$

The first row of b coefficients gives a second order accurate method, and the second row gives a method of order three. The pair is applied to the ODE

$$
y^{\prime}=-y^{2}, \quad y(0)=1 .
$$

a) Let the initial step size be $h_{0}=0.2$ and perform one step with the highest order method.
b) Let y_{1}, \hat{y}_{1} denote the solutions after one step with stepsize $h_{0}=0.2$ with the lowest, respectively the highest order method, both starting from $y(0)=y_{0}=1$.
Compute the local error estimate $\hat{\epsilon}_{1}=\left|y_{1}-\hat{y}_{1}\right|$.
c) Comparing $\hat{\epsilon}_{1}$ with the tolerance tol $=10^{-3}$, check if the first step is acceptable, and if not, compute a new stepsize $h_{\text {new }}$. Use the pessimist factor (safety factor) $P=0.8$.

Problem 10.

Given the two point boundary value problem

$$
u^{\prime \prime}+x^{2} u=\sin (\pi x), \quad 0 \leq x \leq 1,
$$

with boundary conditions

$$
u^{\prime}(0)=0 \quad \text { and } \quad u(1)=0 .
$$

a) Set up a finite difference scheme for this problem using a constant grid size $h=1 / N$.
b) An attempt of an implementation is given below:

```
import numpy as np
N = 50
h = 1/N
A = np.zeros((N,N))
b = np.zeros(N)
U = np.zeros(N+1)
x = np.linspace(0,1,N+1)
# The coefficient matrix A and the right hand side b
A[0,0] = -2
A[0,1] = 1
for i in range(1,N-1):
    xi = x[i]
    A[i,i-1] = 1
    A[i,i] = - 2+h**2*xi**2
    A[i,i+1] = 1
    b[i] = np.sin(np.pi*xi)*h**2
A[N-1,N-2] = 1
A[N-1,N-1] = -2+h**2
U[:-1] = np.linalg.solve(A,b) # U[N] = 0 is known
```

The plot of the numerical solution is:

How can you conclude that this is not the correct solution?
Locate the error in the code.

List of Fourier Transforms.

$f(x)$	$\hat{f}(\omega)$
$\mathrm{e}^{-a x^{2}}$	$\frac{1}{\sqrt{2 a}} \mathrm{e}^{-\frac{\omega^{2}}{4 a}}$
$\mathrm{e}^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \frac{a}{\omega^{2}+a^{2}}$
$\frac{1}{x^{2}+a^{2}}$ for $a>0$	$\sqrt{\frac{\pi}{2}} \frac{\mathrm{e}^{-a\|\omega\|}}{a}$
$\left\{\begin{array}{lll}1 & \text { for }\|x\|<a \\ 0 & \text { otherwise }\end{array}\right.$	$\sqrt{\frac{2}{\pi}} \frac{\sin (\omega a)}{\omega}$
$\sqrt{\frac{2}{\pi}} \frac{\sin (a x)}{x}$	$\begin{cases}1 & \text { for }\|\omega\|<a \\ 0 & \text { otherwise }\end{cases}$

List of Laplace Transforms.

$f(t)$	$F(s)$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (\omega t)$	$\frac{s}{s^{2}-\omega^{2}}$
$\sinh (\omega t)$	$\frac{\omega}{s^{2}-\omega^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$
$\mathrm{e}^{a t}$	$\frac{1}{s-a}$
$f(t-a) u(t-a)$	$\mathrm{e}^{-s a} F(s)$
$\delta(t-a)$	$\mathrm{e}^{-s a}$

Trigonometric identities.

- $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
- $2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$
- $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
- $2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta)$
- $\sin \alpha \cos \beta=\frac{1}{2}(\sin (\alpha-\beta)+\sin (\alpha+\beta))$
- $2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)$
- $\cos (2 \alpha)=2 \cos ^{2}(\alpha)-1=1-2 \sin ^{2}(\alpha)$

Integrals.

- $\int x^{n} \cos a x \mathrm{~d} x=\frac{1}{a} x^{n} \sin a x-\frac{n}{a} \int x^{n-1} \sin a x \mathrm{~d} x$
- $\int x^{n} \sin a x \mathrm{~d} x=-\frac{1}{a} x^{n} \cos a x+\frac{n}{a} \int x^{n-1} \cos a x \mathrm{~d} x$

Order conditions for Runge-Kutta methods

p	Conditions	p	Conditions
1	$\sum_{i=1}^{s} b_{i}=1$	4	$\sum_{i=1}^{s} b_{i} c_{i}{ }^{3}=\frac{1}{4}$
2	$\sum_{i=1}^{s} b_{i} c_{i}=\frac{1}{2}$		$\sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} c_{i} a_{i j} c_{j}=\frac{1}{8}$
3	$\sum_{i=1}^{s} b_{i} c_{i}{ }^{2}=\frac{1}{3}$		$\sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} a_{i j} c_{j}{ }^{2}=\frac{1}{12}$
	$\sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} a_{i j} c_{j}=\frac{1}{6}$	$\sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{k=1}^{s} b_{i} a_{i j} a_{j k} c_{k}=\frac{1}{24}$	

