TMA4130 Matematikk 4N

Week 40, first lecture: Partial differential equations

Douglas R. Q. Pacheco
Department of Mathematical Sciences, NTNU.

Autumn semester, 2022

Partial differential equations
Definition: PDES are equations written in terms of a function (say, u) and its (partial) derivatives with respect to at least two independent variables. variable, then that's actually an ODE \rightarrow Ordinary
\rightarrow The solution of a differential equation is a function (or multiple function)
\rightarrow We will denote our unknown function as u

Important examples (PDEs)
(ID)

* Heat equation: $\frac{\partial u}{\partial t}-\alpha \frac{\partial^{2} u}{\partial x^{2}}=\underline{q}=\underline{q(x, t)} \rightarrow$ heat source
stine \rightarrow space (1D)
$r^{2} \rightarrow$: wave speed
*Wave equation (1D): $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \times 2} \quad$ elastic parameter
, displacement (transverse)
* Vibration of an elastic beam (bar): $\frac{\partial^{2} u}{\partial t^{2}}+\frac{k^{2} \partial^{4} u}{\partial x^{4}}=\underset{\substack{\text { mechanical } \\ \text { load }}}{q(x, t)}$
vertical displacement
*Deflection of plates: $\frac{\partial^{4} u^{\prime}}{\partial x^{4}}+\frac{2 \partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{2}}=q(x, y)$ (bi-harmonic (static) equation)

The Poisson equation

$$
\nabla^{2} u=f \text {; in } 2 \nabla: \nabla^{2} u:=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y_{2}} \text {; in } 3 D: \nabla^{2} u:=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

Lo Laplace operator (Laplacian)

* When the right-hand side f is identically zero ($f \equiv 0$), we call this the Laplace equation $\left(\nabla^{2} u=0\right)$

Examples (applications):

* Stationary temperature distribution in solids or fluids
* electric potential
\& inviscid flow (negligible viscosity)

4
y torsion of prismatic bars ..

Linear and nonlinear PDEs
A linear PDE can be written as a linear combination of $1, U$, and the partial derivatives of u.
\rightarrow The wefficients of this linear combination need not be constant, that is, they can depend on the independent variables, but not on the unknown u.

$$
\begin{aligned}
& E_{x} \therefore \frac{\partial u}{\partial t}-\frac{\partial u}{\partial x}=0 ; \quad x^{2} i \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}-2 y^{3} \cdot 1+i 0 ; u=0 \text { (both linear) } \\
& \text { Counterexamples: : } \frac{\partial u}{\partial y}-3 \frac{\partial^{2} u}{\partial x^{2}}+\left(\frac{\partial u}{\partial t}\right)^{2}=O(\text { nonlinear }) \\
& \text { * } \frac{\partial^{2} u}{\partial \times \partial \partial t}+\sin (u)=0 \quad \text { (non-livear) }
\end{aligned}
$$

Homogeneous and non-homogeneous PDEs
\rightarrow In a homogeneous PDE, all terms depend on u and/or its partial derivatives, and vanish for $u \equiv 0$.

$$
E_{x: \therefore} \frac{\partial^{2} u}{\partial x \partial t}+\sin (u)=0 \text { (homogeneous) }
$$

$$
\text { Counter-examples: } \frac{\partial u}{\partial t}+\frac{x \partial u}{\partial x}=x^{2} t
$$

$$
* \frac{\partial^{2} u}{\partial \times 2}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=1
$$

both non-homogeneous
\rightarrow The zoo function $(u \equiv 0)$ is always (a) solution of a homogeneous PDE

Order of a PDE
\rightarrow The order of a PDE is the order of the highest partial derivative appearing in the PDE

$$
\begin{aligned}
& \text { Ex:: } * \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0 \quad \text { (second-order) } \\
& * x^{2} \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=\sin (t) \quad \text { (first-order) } \\
& * \frac{\partial^{2} u}{\partial x}+\frac{\partial u}{\partial y}=0 \quad \text { (second-order) } \\
& * \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y}=1 \quad \text { (first-order) }
\end{aligned}
$$

Classification of PDEs (linearity, homogeneous/not, order)
Examples: inge pedent个 of u
$\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-t \frac{\partial^{2} u}{\partial x^{2}}=\left(x \mathrm{e}^{-t^{2}}\right)-1$ (linear, not homogeneous, second order)

Classification of PDEs

Examples:

$$
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-t \frac{\partial^{2} u}{\partial x^{2}}=x \mathrm{e}^{-t^{2}}
$$

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \text { (homogeneous, non-linear, first-order) }
$$

Superposition(principle)
Let u_{1} ard u_{2} both be solutions of a certain PDE. If any linear combination $u_{3}=\alpha u_{1}+\beta u_{2}$ is also a solution of this PDE, then we say that the PDE admits superposition.
\rightarrow The superposition prirciple hods if, and only if, the PDE is linear and homogeneous.

Initial and boundary conditions

- In general, a PDE can (will) have infinitely many solutions. That's why we usually have bourdary and initial conditions.
\rightarrow Initial conditions (JCs) are the values of u and its temporal derivatives at the initial time (usually $t=0$)
\rightarrow If a PDE is of order k in time (nighest time derivative in the PDE is $\frac{\partial^{k} u \text {) }}{\partial t^{k}}$, we will reed $k I C_{s}$: the values of $u, \frac{\partial u}{\partial t}, \cdots, \frac{\partial^{k-1} u}{\partial t^{k-1}}$ at $t=0$.

$$
\text { Examples: } \begin{aligned}
\frac{\partial u}{\partial t}-\alpha \frac{\partial^{2} u}{\partial x^{2}}=q(x, t) \rightarrow I c: u(x, 0) & =f(x) \text { (heat) } \\
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial u^{2}}{\partial x^{2}}=0 \rightarrow I C_{s}: u(x, 0) & =f(x) \rightarrow \text { giver! (wave) } \\
\left.\frac{\partial u}{\partial t}\right|_{t=0} & =g(x)
\end{aligned}
$$

Initial and boundary conditions

- Boundary conditions (BCs): conditions on u and/or spatial derivatives of u on the boundary of the spatial domain. How many and which ones are needed possible is a much more complicated matter (depends on the PDE)

$$
E_{x}: \frac{\partial u}{\partial t}-\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=q(x, y)
$$

The one-dimensional wave equation
$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \rightarrow$ energy-conserving wave with speed c
\rightarrow Model problem: vibration of a string

- Modelling assumptions (simplifying assumptions):
* The string is subjected to a constant tension F
* The string has a uniform weight distribution $\left(\frac{\Delta m}{\Delta x}=\frac{m}{2}=\rho\right)$
$* m g \ll F$ (negligible weight \rightarrow not mass)
* Lateral motion negligible (only transverse displacements are considered)
* The transverse displacements are small in comparison to L

The one-dimensional wave equation

* No lateral motion: $F_{1} \cos \theta_{1}=F_{2} \cos \theta_{2}=F$ (given, constant) $(*)$
* Newton's second law in the vertical direction (transversal):

$$
\begin{aligned}
& F_{2} \sin \theta_{2}-F_{1} \sin \theta_{1}=\Delta m \frac{\partial^{2} u}{\partial t^{2}} \stackrel{(*)}{\Rightarrow} \underset{\cos \theta_{2}}{F \sin \theta_{2}}-\underset{\cos \theta_{1}}{\tan \sin ^{\tan \theta_{1}} \theta_{1}}=\rho \Delta \times \frac{\partial^{2} u}{\partial t^{2}} \Rightarrow \\
& \Rightarrow \tan \theta_{2}-\tan _{\frac{\tan }{\partial x}} \theta_{1}=\rho \frac{\Delta x}{F} \frac{\partial^{2} u}{\partial t^{2}} \Rightarrow \frac{\Delta x}{F} \frac{\partial^{2} u}{\partial t^{2}}=\left.\frac{\partial u}{\partial x}\right|_{x+\Delta x}-\left.\frac{\partial u}{\partial x}\right|_{x}
\end{aligned}
$$

The one-dimensional wave equation

- $\frac{\partial u}{\partial x}(x, t)=s(x, t)$
loslope of the curve $u(x)$
$\Rightarrow f \frac{\partial^{2} u}{\partial t^{2}}=\frac{S(x+\Delta x, t)-S(x,-t)}{\Delta x} \rightarrow$ Now, to derive a PDE, we will take

$$
\Rightarrow f_{F} \frac{\partial^{2} u}{\partial t^{2}}=\lim _{\Delta x \rightarrow 0} \frac{s(x+\Delta x, t)-s(x, t)}{\Delta x}=\frac{\partial s}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial^{2} u}{\partial x^{2}}
$$

TFinally: $\frac{\partial^{2} u}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} u}{\partial x^{2}} \rightarrow$ wave equation with wave speed c :

$$
c=\sqrt{\frac{F}{\rho}}
$$

