
TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

Exercise #+∞

November 2022

In this sheet, you can �nd several implementation-related problems that are of the same form
as the ones that could be given in the exam. This exercise should not be handed in!

Problem 1.

Consider the following implementation of a quadrature rule:
import numpy as np

[a, b] = 0.5, 1

def f(x):
return np.exp(-x**2)

S = (f(a)+4*f(.5*(a+b))+f(b))/6

a) The formula implemented in the last line has a mistake that will lead to the wrong
output S. Rewrite that line with the correct formula.

b) Once the mistake is corrected, what numerical method will be implemented?

c) After correcting the mistake, what value will the output S have?

Solution.

Deadline: — page 1 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

a) The quadrature formula is missing the length (𝑏 −𝑎) of the interval: we should actually
have
S = (b-a)*(f(a)+4*f(.5*(a+b))+f(b))/6.

b) After correcting the mistake, we will have an implementation for Simpson’s rule.

c) We will get

𝑆 = (𝑏 − 𝑎) 𝑓 (𝑎) + 4𝑓 ((𝑎 + 𝑏)/2) + 𝑓 (𝑏)
6

= (1 − 0.5) e
−0.52 + 4e−0.752 + e−12

6
≈ 0.2854843

Problem 2.

Consider the following implementation of an iterative method:
from numpy import cos , sin , log

x = 0.5
err = abs(sin(x)+log(x))

while err > 1e-6:
dx = -(sin(x)+log(x))/(cos(x)+1/x)
x = x + dx
err = abs(dx)

print(x)

a) What method is implemented above?

b) Write down the speci�c equation being (iteratively) solved by the algorithm.

Solution.

a) Newton’s method (Newton–Raphson).

b) The equation being solved is sin𝑥 + log𝑥 = 0, or sin𝑥 = − log𝑥 .

Deadline: — page 2 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

Problem 3.

We consider the solution of the equation

cos(cos(𝑥)) = 3𝑥
2
.

a) Show that this equation has a unique solution 𝑥 ∈ R.

b) If you run the code below, you will obtain a value 𝑥 that is a numerical approximation
of 𝑥 . Provide an upper bound for the error 𝑒 := |𝑥 − 𝑥 |.

import numpy as np

def g(x):
return 2*np.cos(np.cos(x))/3

x = 0
x_old = 1

while np.abs(x_old -x) > 1e-6:
x_old = x
x = g(x)

print(x)

Solution.

a) We rewrite this equation as the �xed point equation

𝑥 = 𝑔(𝑥) with 𝑔(𝑥) = 2
3
cos(cos(𝑥)) .

Then
𝑔′(𝑥) = 2

3
sin(cos(𝑥)) sin(𝑥).

Since |sin(𝑦) | ≤ 1 for all 𝑦 , it follows that

|𝑔′(𝑥) | ≤ 2
3

for all 𝑥 . That is, 𝑔 is a contraction with contraction factor 𝐿 = 2/3. Now the �xed point
theorem implies that the equation 𝑔(𝑥) = 𝑥 , which is equivalent to cos(cos(𝑥)) = 3𝑥/2,
has a unique solution 𝑥 .

Deadline: — page 3 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

b) This code is an implementation of the �xed point iteration

𝑥𝑘+1 = 𝑔(𝑥𝑘)

with the function
𝑔(𝑥) = 2

3
cos(cos(𝑥)) .

Moreover, the while-loop stops as soon as the di�erence between the current and the
previous iterate is at most 10−6, that is, when

|𝑥 − 𝑥old | ≤ 10−6.

As shown in part a), the function 𝑔 is a contraction with contraction factor 𝐿 = 2
3 . The

a-posteriori estimate thus implies that

|𝑥 − 𝑥 | ≤ 𝐿

1 − 𝐿 |𝑥 − 𝑥old |.

With 𝐿 = 2/3 and |𝑥 − 𝑥old | ≤ 10−6, we obtain

|𝑥 − 𝑥 | ≤ 2/3
1 − 2/310

−6 = 2 · 10−6.

Problem 4.

We consider the numerical solution of the of ODEs

𝑦′(𝑡) = −𝑎𝑡𝑦 (𝑡) + 𝑏, 𝑦 (0) = 𝑦0.

Here 𝑎 > 0, 𝑏 ∈ R and 𝑦0 ∈ R are given numbers.

The following code tries to implement a function that returns the numerical result after 𝑁
steps of the implicit Euler method for this problem with step length ℎ. However, it contains
two errors. Find them!
import numpy as np

def iEuler(a,b,y0,h,N):
y = y0
t = 0
for n in range(N):

y = (y+b)/(1+t*h*a)
t = t+h

return(y)

Deadline: — page 4 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

Solution.

The implicit Euler method for this equation reads

𝑦𝑛+1 = 𝑦𝑛 + ℎ(−𝑎𝑡𝑛+1𝑦𝑛+1 + 𝑏).

Solving for 𝑦𝑛+1 yields the explicit expression

𝑦𝑛+1 =
𝑦𝑛 + ℎ𝑏
1 + 𝑎ℎ𝑡𝑛+1

. (1)

Moreover, we have the update for the time

𝑡𝑛+1 = 𝑡𝑛 + ℎ

and the initialisation 𝑡0 = 0.

We now look at the actual implementation: The function takes as input the values 𝑎, 𝑏, 𝑦0, ℎ,
and 𝑁 , which is �ne. Then it initialises 𝑦 with 𝑦0, and 𝑡 with 0, which is �ne as well. After
that, the function performs 𝑁 iterations of the for-loop, and �nally returns the last value of 𝑦
as output. All of this appears to be reasonable, so we have to take a look at what happens
within the for-loop.

First, we have the update

𝑦 ← 𝑦 + 𝑏
1 + 𝑡ℎ𝑎 , (2)

and afterwards we update
𝑡 ← 𝑡 + ℎ.

What we see immediately when we compare (1) and (2) is that the enumerator should be
𝑦 + ℎ𝑏 instead of 𝑦 + 𝑏.

Next we see that the value of 𝑡 is only updated after the update of 𝑦 . This means that the
update of 𝑦 is calculated with the old value 𝑡𝑛 instead of with 𝑡𝑛+1. For instance, in the �rst
step (for 𝑛 = 0), we should compute (since 𝑡1 = ℎ)

𝑦1 =
𝑦0 + ℎ𝑏
1 + 𝑎ℎ𝑡1

=
𝑦0 + ℎ𝑏
1 + 𝑎ℎ2 .

However, in the code above, the value of 𝑡 is still equal to 0, and thus we obtain instead the
wrong value

𝑦̃1 =
𝑦0 + ℎ𝑏
1 + 𝑎ℎ · 0 = 𝑦0 + ℎ𝑏.

Deadline: — page 5 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

In order to correct this error, we should update the value of 𝑡 before the value of 𝑦 , that is,
switch the order of the two lines within the for-loop.

This gives us the following corrected code (you do not have to provide the corrected code in
order to get full marks in the exam, unless the question explicitly asks for it):
import numpy as np

def iEuler(a,b,y0,h,N):
y = y0
t = 0
for n in range(N):

t = t+h
y = (y+h*b)/(1+t*h*a)

return(y)

Problem 5.

Consider the following implementation of a certain Runge–Kutta method:
import numpy as np
from numpy import sin , exp

y0 = np.array([pi/3, 0])
T = 10
h = 0.1
ys = [y0]
ts = [0]

def f(t,y):
f = np.array([y[1], (exp(-t) -1)*sin(y[0])])
return f

while(ts[-1] < T):
t, y = ts[-1], ys[-1]
k1 = f(t,y)
k2 = f(t+h/2, y+h*k1/2)
ys.append(y + h*k2)
ts.append(t + h)

a) Write down the Butcher tableau for the method implemented above.

b) Write down the initial value problem being solved in the code.

Deadline: — page 6 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

c) Rewrite this initial value problem as a scalar, second-order ODE (with corresponding
initial conditions).

Solution.

a) From the code, we can write

𝑘1 = 𝑓 (𝑡𝑛, 𝑦𝑛) = 𝑓 (𝑡𝑛 + 0 · ℎ, 𝑦𝑛 + 0 · ℎ𝑘1 + 0 · ℎ𝑘2) ⇒ 𝑐1 = 𝑎11 = 𝑎12 = 0 .
𝑘2 = 𝑓 (𝑡𝑛 + ℎ/2, 𝑦𝑛 + ℎ𝑘1/2)

= 𝑓 (𝑡𝑛 + 0.5ℎ, 𝑦𝑛 + ℎ[0.5𝑘1 + 0 · 𝑘2]) ⇒ 𝑐1 = 𝑎21 = 0.5, 𝑎22 = 0 .
𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑘2 = 𝑦𝑛 + 0 · ℎ𝑘1 + 1 · ℎ𝑘2 ⇒ 𝑏1 = 0, 𝑏2 = 1 .

We therefore get

0 0 0
1/2 1/2 0

0 1

b) Runge–Kutta methods are designed for �rst-order problems y′(𝑡) = f (𝑡, y), where y and
f can be either scalars or vectors (arrays, in Python). From the function f implemented
under def f(t,y):, we see that

f (𝑡, y) =
[

𝑦2
(e−𝑡 − 1) sin 𝑦1

]
(remember that Python starts numbering from 0).

We also see from the code that 𝑦1(0) = 𝜋/3 and 𝑦2(0) = 0 (the two entries of the vector
y0). The complete initial value problem is therefore

y′(𝑡) :=
[
𝑦′1
𝑦′2

]
=

[
𝑦2

(e−𝑡 − 1) sin 𝑦1

]
, with y(0) =

[
𝜋/3
0

]
.

c) The second equation in the 2 × 2 system reads 𝑦′2 = (e−𝑡 − 1) sin 𝑦1, while the �rst one
is simply 𝑦′1 = 𝑦2, so that 𝑦′2 = 𝑦′′1 . Then, eliminating 𝑦′2 gives us

𝑦′′1 = (e−𝑡 − 1) sin 𝑦1 ,

or, by denoting 𝑦1 as simply 𝑦 , the second-order scalar ODE

𝑦′′(𝑡) + (1 − e−𝑡) sin 𝑦 (𝑡) = 0 , with 𝑦 (0) = 𝜋/3 and 𝑦′(0) = 0 .

Deadline: — page 7 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

Problem 6.

We consider the heat equation

𝜕𝑡𝑢 = 𝜕𝑥𝑥𝑢 for 0 < 𝑥 < 1 and 𝑡 > 0

with initial conditions
𝑢 (𝑥, 0) = 𝑥3 for 0 < 𝑥 < 1

and boundary conditions
𝑢 (0, 𝑡) = 0
𝑢 (1, 𝑡) = 1

}
for 𝑡 > 0.

The following code computes a numerical solution of this problem using the explicit Euler
method.
import numpy as np

M = 10
h = 1/M
x = np.linspace (0,1,M+1)
k = 1/200
N = 400
r = k/h**2

U = np.zeros([M+1,N+1])

U[:,0] = x**3

for n in range(N):
U[0,n+1] = 0
U[1:-1,n+1] = U[1:-1,n] + r*(U[0:-2,n] - 2*U[1:-1,n] + U[2:,n])
U[-1,n+1] = 1

How must the last line be changed, if we want to solve the same problem with the boundary
conditions

𝑢 (0, 𝑡) = 0
𝜕𝑥𝑢 (1, 𝑡) = 1

}
for 𝑡 > 0

instead?

Solution.

Our task is to replace the (Dirichlet) boundary condition 𝑢 (1, 𝑡) = 1 with the (Neumann)

Deadline: — page 8 of 9

TMA4130/35Matematikk 4N/D
Høst 2022

Exercise #+∞

Submission Deadline:
—

boundary condition 𝜕𝑥𝑢 (1, 𝑡) = 1. For that, we need to change the computation of𝑈 𝑛+1
𝑀

, which
happens in the last line of the code.

For the computation of 𝑈 𝑛+1
𝑀

, we have to combine the information we get from the PDE with
the boundary condition. From the discretisation of the PDE, we get the expression

𝑈 𝑛+1
𝑀 = 𝑈 𝑛

𝑀 +
𝑘

ℎ2
(
𝑈 𝑛
𝑀−1 − 2𝑈

𝑛
𝑀 +𝑈

𝑛
𝑀+1

)
. (3)

By discretising the (Neumann) boundary condition

𝜕𝑥𝑢 (1, 𝑡) = 1

with a central di�erence we obtain the condition

𝑈 𝑛
𝑀+1 −𝑈

𝑛
𝑀−1

2ℎ
= 1.

Solving this for𝑈 𝑛
𝑀+1, we get

𝑈 𝑛
𝑀+1 = 𝑈 𝑛

𝑀−1 + 2ℎ.
We now insert this into (3) and obtain

𝑈 𝑛+1
𝑀 = 𝑈 𝑛

𝑀 +
𝑘

ℎ2
(
2𝑈 𝑛

𝑀−1 − 2𝑈
𝑛
𝑀 + 2ℎ

)
= 𝑈 𝑛

𝑀 + 2
𝑘

ℎ2
(
𝑈 𝑛
𝑀−1 −𝑈

𝑛
𝑀 + ℎ

)
.

With the abbreviation 𝑟 = 𝑘/ℎ2 (which is also used in the given code), one possible implemen-
tation would thus replace the last line in the code above with the following line:

U[-1,n+1] = U[-1,n] + 2*r*(U[-2,n] - U[-1,n] + h)

Deadline: — page 9 of 9

