TMA4130 MATEMATIKK 4N

Lecture 11: Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting). Dirac's Delta Function.

Elisabeth Köbis
September 27, 2021

Unit Step Function (Heaviside Function) $u(t-a)$

 Definition: Unit Step Function (Heaviside Function)$u(t-a)$
Let $a \geqq 0$. The unit step function (or Heaviside function) $u(t-a)$ is defined as follows:

$$
u(t-a):= \begin{cases}0 & (t<a) \\ 1 & (t>a)\end{cases}
$$

Figure: The unit step function $u(t)$ for $a=0$ (with jump at 0).

Figure: The unit step function $u(t-a)$ (with jump at a).

Shifted Functions

Figure: Function
$f(t)$ with $f(t)=0$
for $t<0$.

Figure: Function
$f(t-a)$.

Figure: Function
$u(t-a) f(t-a)$.

Shifted and Switched On/Off-Functions

Figure: Function $f(t)$.

Figure: Function
$f(t-a)$.

Figure: Function
$u(t-a) f(t-a)$.

Laplace Transform of the unit step function

$$
\mathcal{L}\{u(t-a)\}=
$$

Theorem: Second Shifting Theorem; Time Shifting If $f(t)$ has the transform $F(s)$, then the function

$$
\tilde{f}(t)=f(t-a) u(t-a):= \begin{cases}0 & (t<a) \\ f(t-a) & (t>a)\end{cases}
$$

has the transform $e^{-a s} F(s)$. That is, if $\mathcal{L}(f)=F(s)$, then

$$
\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s) .
$$

Or, if we take the inverse on both sides, we can write

$$
f(t-a) u(t-a)=\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\} .
$$

Example

Write the following function using unit step functions and find its transform.

$$
f(t)= \begin{cases}2 & (0<t<1) \\ \frac{1}{2} t^{2} & \left(1<t<\frac{1}{2} \pi\right) \\ \cos t & \left(t>\frac{1}{2} \pi\right)\end{cases}
$$

Example

Find the inverse transform $f(t)$ of

$$
F(s)=\frac{e^{-s}}{s^{2}+\pi^{2}}+\frac{e^{-2 s}}{s^{2}+\pi^{2}}+\frac{e^{-3 s}}{(s+2)^{2}}
$$

Figure: $f(t)=\frac{1}{\pi} \sin (t(t-1)) u(t-1)+\frac{1}{\pi} \sin (t(t-2)) u(t-2)$.

Dirac's Delta Function

Consider the function

$$
f_{k}(t-a)= \begin{cases}\frac{1}{k} & (a \leqq t \leqq a+k) \\ 0 & (\text { else })\end{cases}
$$

This function represents, for instance, a force of magnitude $\frac{1}{k}$ acting from $t=a$ to $t=a+k$, where k is positive and small. In mechanics, the integral of a force acting over a time interval $a \leqq t \leqq a+k$ is called the impulse of the force.

Figure: Function $f_{k}(t-a)$.

Dirac's Delta Function

The impulse of f_{k} is

$$
I_{k}:=\int_{o}^{\infty} f_{k}(t-a) d t=\int_{a}^{a+k} \frac{1}{k} d t=
$$

Figure: Function $f_{k}(t-a)$.

Dirac's Delta Function

Consider $k \rightarrow 0$:

Figure: Function

$$
f_{k}(t-a)
$$

Figure: Function $f_{k}(t-a)$.

Dirac's Delta Function

Definition: Dirac's Delta Function (Unit Impulse

Function) $\delta(t-a)$
Dirac's delta function is defined as

$$
\delta(t-a):=\lim _{k \rightarrow 0} f_{k}(t-a)= \begin{cases}\infty & (t=a) \\ 0 & (\text { else })\end{cases}
$$

Remark

Furthermore, we define $\int_{0}^{\infty} \delta(t-a) d t=1$. However, from calculus we know that a function which is everywhere 0 except at a single point must have the integral equal to 0 . Therefore, $\delta(t-a)$ is not a function in the ordinary sense as used in calculus, but a so-called generalized function.

Sifting Property of Dirac's Delta Function

Given a continuous function $g(t)$, it holds

$$
\int_{0}^{\infty} g(t) \delta(t-a) d t=g(a)
$$

Laplace Transform of Dirac's Delta Function

Example

Determine the response of the damped mass-spring system under a square wave, modeled by

$$
y^{\prime \prime}+3 y^{\prime}+2 y=r(t)=u(t-1)-u(t-2), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Example

Find the response of the system in the previous example with the square wave replaced by a unit impulse at time $t=1$, that it, determine the response of the damped mass-spring system, modeled by

$$
y^{\prime \prime}+3 y^{\prime}+2 y=r(t)=\delta(t-1), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

References

The material of this lecture was based on Chapter 6.3 and 6.4 of the book

Advanced Mathematical Engineering by Erwin Kreyszig (John Wiley \& Sons, 10th edition, 2011).
Moreover, we recommend the lecture notes by Morten Nome (in Norwegian), who taught the 2019 edition of this course. You can download Lecture 1 of Morten's lecture notes collection here:
https://www.math.ntnu.no/emner/TMA4125/2019v/notater/
01-laplacetransform.pdf

Next lecture

We continue with the Laplace transform by considering:

- Convolution
- Integral equations

