1 Required Exercises

1.1 The Superposition Principle

A PDE satisfies the superposition principle if, given any two solutions u, v and some $c \in \mathbb{R}$, the following conditions are satisfied:

- $u+v$ and $c \cdot u$ satisfy the equation.
- If initial or boundary conditions are given, then $u+v$ and $c \cdot u$ both satisfy the initial conditions.

1 For the following PDEs, check if the superposition holds.
a) $\frac{\partial^{3} u}{\partial t^{3}}=x \frac{\partial u}{\partial x}$,
b) $\frac{\partial^{2} u}{\partial t^{2}}=u \frac{\partial^{2} u}{\partial x^{2}}$,
c) $\frac{\partial^{2} u}{\partial t \partial x}=(t+x) \frac{\partial u}{\partial t}$, with $u(0, t)=0$ and $\frac{\partial u}{\partial x}(1, t)=0$,
d) $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, with $u(0, t)=0$ and $u(2, t)=2$.

1.2 The Heat Equation

2 In this question we consider the heat equation with $c=1$,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \tag{1}
\end{equation*}
$$

modelling the flow of heat through a thin, uniform rod of length L.
Consider first the case where we have two Dirichlet boundary conditions,

$$
\begin{equation*}
u(0, t)=0, \text { and } u(L, t)=0 . \tag{2}
\end{equation*}
$$

a) Find the solution to (1) with boundary conditions (2) and with initial condition

$$
\begin{equation*}
u(x, 0)=7 \sin \left(\frac{3 \pi}{L} x\right)+2 \sin \left(\frac{5 \pi}{L} x\right) \tag{3}
\end{equation*}
$$

You may make use of the solution formula derived in lectures.
b) Find the solution to the inhomogeneous heat equation,

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=1 \tag{4}
\end{equation*}
$$

with boundary conditions (2), and initial condition (3).
Hint: Consider a new function $v(x, t)=u(x, t)+\frac{1}{2} x(x-L)$, where u is a solution to (4). What initial and boundary conditions does it satisfy if u satisfies (2) and (3)?
c) Find the general solution to (1) now with Neumann boundary conditions

$$
\frac{\partial u}{\partial x}(0, t)=0, \text { and } \frac{\partial u}{\partial x}(L, t)=0
$$

via the separation of variables method, i.e. assuming $u(x, t)=F(x) G(t)$ for some functions F and G.
Your solution should be of the form

$$
u(x, t)=\sum_{n \in \mathbb{N}} A_{n} g_{n}\left(k_{n} x\right) e^{-k_{n} t}
$$

where g_{n} and k_{n} are unknowns for you to determine.
Given some initial data $u(x, 0)=f(x)$, provide a formula to calculate A_{n} similar to the one from the Dirichlet BC problem.

2 Highly Recommended Exercises

2.1 The Wave Equation

3 Consider the one dimensional wave equation modelling a thing string of length L.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c \frac{\partial^{2} u}{\partial x^{2}} \tag{5}
\end{equation*}
$$

where $c>0$ is some positive constant, with Neumann boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial x}(0, t)=0, \text { and } \frac{\partial u}{\partial x}(L, t)=0 \tag{6}
\end{equation*}
$$

and initial condition

$$
\begin{equation*}
u(x, 0)=f(x), \text { and } u_{t}(x, 0)=g(x) \tag{7}
\end{equation*}
$$

for some given suitable functions f, g.
a) Using the separation of variables method, find the general solution formula for this problem.
b) Find the solution to equation (5) with $c=4$ and initial data

$$
\begin{equation*}
u(x, 0)=x^{2}, \text { and } u_{t}(x, 0)=\sin (x) \tag{8}
\end{equation*}
$$

