- Date: Oct 6, 2021
- Submission deadline: Oct 20, 2021
[2]:

```
import matplotlib
matplotlib.rcParams.update({'font.size': 12})
import matplotlib.pyplot as plt
import numpy as np
```

In this exercise set you will be analyzing and implementing the following explicit Runge-Kutta methods:

Midpoint rule

Gottlieb \& Gottlieb's 3-stage Runge-Kutta (SSPRK3)

0	0	0	0
1	1	0	0
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	0
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$

1 Convergence orders

Calculate analytically the convergence order's of the two methods. Use the order's conditions given in the lectures.

2 Implementing and testing the methods
In this exercise we will numerically solve the ODE

$$
y^{\prime}(t)=f(y), \quad y(0)=y_{0}
$$

in the interval $t \in[0, T]$.
a) Implement two Python functions explicit_mid_point_rule and ssprk3 which implement the Runge-Kutta methods from Exercise 1. Each solver function should take as arguments:

- The initial value y_{0}
- The inital time t_{0}
- The final time T
- The right-hand side f
- The maximum number of time-steps $N_{\max }$

The function should return two arrays:

- One array ts containing all the time-points $0=t_{0}, t_{1}, \ldots, t_{N}=T$
- One array ys containing all the function values
$y_{0}, y_{1}, \ldots, y_{N}$
Test the methods on the ODE

$$
y^{\prime}(t)=-y(t), \quad y(0)=1, \quad t \in[0,10] .
$$

Hint: Use the code for explicit_euler in the lecture notes or use the supporting material e.g. Heun in IntroductionNuMeODE, and modify it to each required method.
b) We will now numerically investigate the RK-methods. We can do this since we know what the exact solution to the ODE above is. We assume that the error $e=\left|y(T)-y_{N}\right|$ when using step size τ is approximately

$$
e \approx C \tau^{p}
$$

for some $C>0$ and p. Note that p is what we call the convergence order. We assume that p and C is the same when using different step sizes h. Let e_{1} and e_{2} be the errors when using step sizes h_{1} and h_{2}. Then we have

$$
\frac{e_{1}}{e_{2}} \approx \frac{\tau_{1}^{p}}{\tau_{2}^{p}}=\left(\frac{\tau_{1}}{\tau_{2}}\right)^{p} .
$$

Taking logarithms on both sides we get

$$
\log \left(e_{1} / e_{2}\right) \approx p \log \left(\tau_{1} / \tau_{2}\right)
$$

or

$$
\begin{equation*}
p \approx \frac{\log \left(e_{1} / e_{2}\right)}{\log \left(\tau_{1} / \tau_{2}\right)} \tag{1}
\end{equation*}
$$

The value on the right-hand side of this equation is what we call the Experimental Order of Convergence, or EOC. We will now try to estimate the order of convergence using EOC-values.

Do the following for each method: 1 . For $m=0, \ldots, 5$, set $\tau_{m}=2^{-m}$ and find the value of $N_{\text {max }}$ for each m. 2. Find the numerical solution $y_{N(m)}$ of the ODE at $T=10$. 2. Calculate the error $e_{m}=\left|y(10)-y_{N_{\text {max, }, m} \mid}\right|$. 3. Calculate the EOC for neighbouring step sizes, that is using equation (1) above with e_{m} and e_{m+1} for $m=0, \ldots, 4$. This should give you 5 different approximations.

Draw a conclusion about the order of convergence p for each method. Does it agree with the result in exercise 1?
c) We will finally test both methods on the ODE

$$
y^{\prime}(t)=-2 t y(t), \quad y(0)=1, \quad t \in[0,0.5]
$$

This has exact solution $e^{-t^{2}}$. Find the approximate value of $y(0.5)$ using

- The midpoint method with $N_{\max }=3$
- The SSPRK3 method with $N_{\max }=2$

The number of step sizes are chosen such that each method needs to perform 6 evaluations of the function f. How do the errors $e=\left|y(T)-y_{N_{\max }}\right|$ compare?
Additional exercise: Does this observation holds for other values of T ? For instance, with $T=0.2$ or $T=0.8$. Can you tell what happens to y or y^{\prime} in $T=0.5$?

3 SIR Model

The SIR model is a system of first order ODE's which model the dynamics of a disease in a society.

There are $S(t)$ susceptible/healthy individuals, $I(t)$ infected individuals and $R(t)$ recovered individuals. Each susceptible person has a risk of becoming infected, a risk which is proportional to the number of infected people $I(t)$, with a proportinality constant $\beta>0$. Each infected person also has a chance of recovering, with a recovery constant $\gamma>0$. This leads to the coupled system of first-order ODE's

$$
\begin{aligned}
S^{\prime}(t) & =-\beta S(t) I(t) \\
I^{\prime}(t) & =\beta S(t) I(t)-\gamma I(t) \\
R^{\prime}(t) & =\gamma I(t)
\end{aligned}
$$

We can rewrite this in vector form as

$$
\mathbf{u}^{\prime}(t)=\mathbf{f}(\mathbf{u}(t))
$$

where we have defined

$$
\mathbf{u}(t)=\left(\begin{array}{c}
S(t) \\
I(t) \\
R(t)
\end{array}\right), \quad \mathbf{f}(\mathbf{u}(t))=\left(\begin{array}{c}
-\beta S(t) I(t) \\
\beta S(t) I(t)-\gamma I(t) \\
\gamma I(t)
\end{array}\right)
$$

a) Show that the system is conservative, that is that the total number of individuals $S(t)+$ $I(t)+R(t)$ is constant.
Hint: remember which is the derivative of a constant function.
b) Numerically solve the system

$$
\mathbf{u}^{\prime}(t)=\mathbf{f}(\mathbf{u}(t)), \quad \mathbf{u}(0)=\mathbf{u}_{0}, \quad t \in[0, T]
$$

with either of the RK-methods above.

- You may pick end-time T and $N_{\max }$,
- Choose an initial number of individuals.
- A suitable inital conditions could e.g. be $\mathbf{u}_{0}=(50,10,0)^{T}$.
- Plot the solution as a function of time.
- Also plot the total number of individuals.
- Is the total number conserved? To check this, you might calculate the maximum total and the minimum total over the interval.
- The parameters $\beta=0.2$ and $\gamma=0.15$ can be helpful for ilustration.

If you need a guide for this problem, you can look at the Lotka-Volterra model. It was presented in the lectures and is also available in the learning material on the wiki-page.
Additional exercise: modify the SIR model such that the population is not longer constant. One idea is to have a proportion of the infected population to die with rate δ. Test the new model as before.

