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[2]: import matplotlib
matplotlib.rcParams.update({'font.size': 12})
import matplotlib.pyplot as plt
import numpy as np

In this exercise set you will be analyzing and implementing the following explicit Runge-Kutta
methods:
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1 Convergence orders

Calculate analytically the convergence order’s of the two methods. Use the order’s con-
ditions given in the lectures.

2 Implementing and testing the methods

In this exercise we will numerically solve the ODE

y′(t) = f (y), y(0) = y0

in the interval t ∈ [0, T].

a) Implement two Python functions explicit_mid_point_rule and ssprk3 which im-
plement the Runge-Kutta methods from Exercise 1. Each solver function should take as
arguments:

• The initial value y0

• The inital time t0

• The final time T
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• The right-hand side f

• The maximum number of time-steps Nmax

The function should return two arrays:

• One array ts containing all the time-points
0 = t0, t1, ..., tN = T

• One array ys containing all the function values
y0, y1, ..., yN

Test the methods on the ODE

y′(t) = −y(t), y(0) = 1, t ∈ [0, 10].

Hint: Use the code for explicit_euler in the lecture notes or use the supporting material
e.g. Heun in IntroductionNuMeODE, and modify it to each required method.

b) We will now numerically investigate the RK-methods. We can do this since we know
what the exact solution to the ODE above is. We assume that the error e = |y(T)− yN |
when using step size τ is approximately

e ≈ Cτp

for some C > 0 and p. Note that p is what we call the convergence order. We assume that
p and C is the same when using different step sizes h. Let e1 and e2 be the errors when
using step sizes h1 and h2. Then we have

e1

e2
≈

τ
p
1

τ
p
2
=

(
τ1

τ2

)p

.

Taking logarithms on both sides we get

log(e1/e2) ≈ p log(τ1/τ2)

or

p ≈ log(e1/e2)

log(τ1/τ2)
. (1)

The value on the right-hand side of this equation is what we call the Experimental Order
of Convergence, or EOC. We will now try to estimate the order of convergence using
EOC-values.

Do the following for each method: 1. For m=0,. . . ,5, set τm = 2−m and find the value of
Nmax for each m. 2. Find the numerical solution yN(m) of the ODE at T = 10. 2. Calculate
the error em = |y(10)− yNmax,m |. 3. Calculate the EOC for neighbouring step sizes, that
is using equation (1) above with em and em+1 for m = 0, ..., 4. This should give you 5
different approximations.

Draw a conclusion about the order of convergence p for each method. Does it agree with
the result in exercise 1?

c) We will finally test both methods on the ODE

y′(t) =− 2ty(t), y(0) = 1, t ∈ [0, 0.5].

This has exact solution e−t2
. Find the approximate value of y(0.5) using

October 6, 2021 Page 2 of 4

https://wiki.math.ntnu.no/tma4130/2021h/learning_material


Exercise set 6

• The midpoint method with Nmax = 3

• The SSPRK3 method with Nmax = 2

The number of step sizes are chosen such that each method needs to perform 6 evalua-
tions of the function f . How do the errors e = |y(T)− yNmax | compare?

Additional exercise: Does this observation holds for other values of T? For instance, with
T = 0.2 or T = 0.8. Can you tell what happens to y or y′ in T = 0.5?

3 SIR Model

The SIR model is a system of first order ODE’s which model the dynamics of a disease in
a society.

There are S(t) susceptible/healthy individuals, I(t) infected individuals and R(t) recov-
ered individuals. Each susceptible person has a risk of becoming infected, a risk which is
proportional to the number of infected people I(t), with a proportinality constant β > 0.
Each infected person also has a chance of recovering, with a recovery constant γ > 0.
This leads to the coupled system of first-order ODE’s

S′(t) =− βS(t)I(t),
I′(t) =βS(t)I(t)− γI(t),

R′(t) =γI(t).

We can rewrite this in vector form as

u′(t) = f(u(t))

where we have defined

u(t) =

S(t)
I(t)
R(t)

 , f(u(t)) =

 −βS(t)I(t)
βS(t)I(t)− γI(t)

γI(t)

 .

a) Show that the system is conservative, that is that the total number of individuals S(t)+
I(t) + R(t) is constant.

Hint: remember which is the derivative of a constant function.

b) Numerically solve the system

u′(t) = f(u(t)), u(0) = u0, t ∈ [0, T]

with either of the RK-methods above.

• You may pick end-time T and Nmax,
• Choose an initial number of individuals.

– A suitable inital conditions could e.g. be u0 = (50, 10, 0)T.
• Plot the solution as a function of time.
• Also plot the total number of individuals.

– Is the total number conserved? To check this, you might calculate the maximum
total and the minimum total over the interval.

• The parameters β = 0.2 and γ = 0.15 can be helpful for ilustration.
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If you need a guide for this problem, you can look at the Lotka-Volterra model. It was
presented in the lectures and is also available in the learning material on the wiki-page.

Additional exercise: modify the SIR model such that the population is not longer constant.
One idea is to have a proportion of the infected population to die with rate δ. Test the
new model as before.
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