Lecture 1: Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

Elisabeth Köbis

NTNU, TMA4130, Matematikk 4N, høst 2020

August 17th, 2020

Literature

Erwin Kreyszig. Advanced Mathematical Engineering. John Wiley \& Sons, 10th edition, 2011

Wikipage: https://wiki.math.ntnu.no/tma4130/2020h/start

Solving linear ODEs and related initial value problems

What is a transform?

The idea of a transform is that it turns a given function into another function. We are already acquainted with several transforms:

1. The derivative D takes a differentiable function f (defined on some interval $(a, b))$ and assigns to it a new function $D f:=f^{\prime}$.
2. The integral I takes a continuous function f (defined on some interval $[a, b]$) and assigns to it a new function

$$
I f(t):=\int_{a}^{t} f(x) d x
$$

3. The multiplication operator M_{ϕ}, which multiplies any given function f on the interval $[a, b]$ by a fixed function ϕ on $[a, b]$, is a transform:

$$
M_{\phi} f(t):=\phi(t) \cdot f(t) .
$$

We are particularly interested in transforms that are linear. A transform T is linear if for some functions f, g and constants $\alpha, \beta \in \mathbb{R}$

$$
T[\alpha f+\beta g]=\alpha T(f)+\beta T(g)
$$

In particular (taking $\alpha=\beta=1$),
and ($\operatorname{taking} \beta=0$)

$$
T[f+g]=T(f)+T(g)
$$

$$
T[\alpha f]=\alpha T(f)
$$

Definition: Laplace transform

Given a function $f(t)\left(f: \mathbb{R}_{+} \rightarrow \mathbb{R}\right)$, its Laplace transform is defined as

$$
\begin{aligned}
& \text { inpul } \\
& \text { output } \rightarrow \underline{F(s)}:=\mathscr{L}(f):=\int_{0}^{\infty} e^{-s t} f(t) d t .
\end{aligned}
$$

The given function $f(t)$ is called the inverse transform of $F(s)$ and is denoted by $\mathscr{L}^{-1}(F)$. Note that the above integral is an improper integral, which is evaluated according to the rule

$$
\int_{0}^{\infty} e^{-s t} f(t) d t:=\lim _{(T) \rightarrow \infty} \int_{0}^{T} e^{-s t} f(t) d t
$$

Remark

Original functions are denoted by lowercase letters and their transforms by the same letters in capital, so that $F(s)$ denotes the transform of $f(t)$, and $Y(s)$ denotes the transform of $y(t)$, and so on.

Laplace Transform

Figure: Pierre-Simon, marquis de Laplace, 23 March 1749 - 5 March 1827, French astronomer and mathematician.

Example
Let $f(t)=1$ when $t \geqq 0$. Find $F(s)$.

$$
\begin{aligned}
& \mathcal{L}(f)=\int_{0}^{\infty} e^{-s t} \cdot 1=\left[-\frac{1}{s}\left[e^{-s t}\right]_{0}^{\infty}\right.=0-(-\frac{1}{s} \cdot \underbrace{e^{-s \cdot 0}}_{=1}) \\
&\left(\begin{array}{l}
(s>0)
\end{array}\right. \\
&=\frac{1}{s} \quad(s>0)
\end{aligned}
$$

$s=0!\int_{0}^{\infty} e_{=1}^{0} d t=\infty \Rightarrow \mathscr{L}(f)$ doe coot exist.
$\xrightarrow{e^{-5 t}} \overbrace{t}^{s<0} \int_{0}^{\infty} e^{-1} d t=\infty \Rightarrow \mathscr{L}(f)$ doe coot exit.

Example
Let $f(t)=e^{a t}$ when $t \geqq 0$, where a is a constant. Find $F(s)$.

$$
\mathcal{L}_{(a-s) t}(f)=\int_{0}^{\infty} e^{-s t} \cdot e^{a t} d t=\int_{0}^{\infty} e^{(a-s) t} d t=\left[\frac{1}{a-s} \cdot e^{(a-s) t]_{0} \infty}\right.
$$

$\stackrel{1}{{ }^{1}}-a-s>0 \Rightarrow \mathscr{L}(f)$ does coot exist.

$$
a-s<0 \Rightarrow \mathscr{L}(f)=0-\frac{1}{a-s} \underbrace{e_{0}^{(a-s) \cdot 0}}_{\infty}=\frac{1}{s-a}
$$

$$
-a=s \Rightarrow \mathscr{L}(f)=\int_{0}^{\infty} e^{0 t} d t=\int_{0}^{\infty} 1 d t=\infty
$$

$\Rightarrow 2^{0}(f)$ does vol ${ }^{\circ}$ exist.

$$
\begin{aligned}
a=0 \Rightarrow f(t)=e^{\circ t}=1 \Rightarrow \mathscr{L}(f)=\frac{1}{s}(s>0) \\
\text { in accordance with the }
\end{aligned}
$$

in accordance with the preceding example.

Figure: Visual verification that the Laplace transform of $e^{a t}$ exists only if $s>a$: Functions $e^{s t}$ with $s=5$ and $f(t)=e^{a t}$ with $a=2$.

Figure: Visual verification that the Laplace transform of $e^{a t}$ does not exists if $s<a$: Functions $e^{s t}$ with $s=2$ and $f(t)=e^{a t}$ with $a=5$.

A Non-Working Example
Example
Does the Laplace transform of $f(t)=e^{t^{2}}$ exist?

$$
\begin{array}{rlr}
\mathscr{L}(f) & =\int_{0}^{\infty} e^{-s t} \cdot e^{t^{2}} d t & \begin{array}{l}
(t \rightarrow \infty, \text { at one } \\
\text { point, t will be } \\
\text { bigge than s) }
\end{array} \\
& =\int_{0}^{\infty} e^{\epsilon(t-s)} d t & \\
& =\infty \Rightarrow \mathscr{L}(f) d \infty, \text { not exist }
\end{array}
$$

$e^{\epsilon^{2}}$ increases much faster than $e^{-s t}$ decreases.

Figure: Functions $f(t)=e^{t^{2}}$ and $e^{-s t}$ for $s=2$.

Theorem: Linearity of the Laplace Transform
The Laplace transform is a linear operation; that is, for any functions f and g whose transforms exist and any constants a and b the transform of $a f(t)+b g(t)$ exists, and

$$
\mathscr{L}\{a f(t)+b g(t)\}=a \mathscr{L}\{f(t)\}+b \mathscr{L}\{g(t)\} .
$$

Proof: $\mathcal{E}\{a f(t)+b g(t)\}=\int_{0}^{\infty} e^{-s t}(a f(t)+b g(t)) d t$

$$
\begin{aligned}
& =\int_{0}^{\infty} e^{-s t} a f(t) d t+\int_{0}^{\infty} e^{-s t} b g(t) d t \\
& =a \cdot \int_{0}^{\infty} e^{-s t} f(t) d t+b \int_{0}^{\infty} e^{-s t} g(t) d t \\
& =a \cdot \mathcal{L}(f)+b \cdot \mathcal{L}(g) .
\end{aligned}
$$

Example
Find the transforms of $\cosh a t$ and $\sinh a t . \quad(a \in \mathbb{R}, a \neq 0)$

$$
\begin{aligned}
\cosh a t & =\frac{1}{2} \cdot\left(e^{a t}+e^{-a t}\right) \\
\mathscr{L}(\cosh a t) & =\frac{1}{2} \mathscr{L}\left(e^{a t}\right)+\frac{1}{2} \mathcal{L}\left(e^{-\alpha t}\right) \\
& =\frac{1}{2} \cdot \underbrace{\frac{1}{s-a}}_{s>a}+\frac{1}{2} \cdot \underbrace{\frac{1}{s+a}}_{s 7-a} \quad \text { if } s>|a| \\
& =\frac{1}{2} \cdot \frac{s+a+s-a}{(s-a)(s+a)} \\
& =\frac{1}{2} \cdot \frac{2 s}{s^{2}-a^{2}} \\
& =\frac{s}{s^{2}-a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sinh a t=\frac{1}{2}\left(e^{a t}-e^{-a t}\right) \\
& \mathcal{L}(\sinh a t)=\frac{1}{2} \mathcal{L}\left(e^{a t}\right)-\frac{1}{2} \mathcal{L}\left(e^{-a t}\right) \\
&=\frac{1}{2} \cdot \frac{1}{s-a}-\frac{1}{2} \cdot \frac{1}{s+a} \quad(s>|a|) \\
&=\frac{1}{2} \cdot \frac{s+a-(s-a)}{(s-a)(s+a)} \\
&=\frac{1}{2} \cdot \frac{2 a}{s^{2}-a^{2}} \\
&=\frac{a}{s^{2}-a^{2}}
\end{aligned}
$$

Example
Derive the formulas
integration by pah:

$$
\mathscr{L}(\cos \omega t)=\frac{s}{s^{2}+\omega^{2}} \quad \int g^{\prime} f=g \cdot f-\int g f^{\prime}
$$

and

$$
\mathscr{L}(\sin \omega t)=\frac{w}{s^{2}+\omega^{2}}
$$

$$
\mathscr{L}(\cos \omega t)=\int_{0}^{\infty} \underbrace{e^{-s t}}_{g^{\prime}} \underbrace{\cos \omega t}_{f} d t
$$

$$
=[-\underbrace{\frac{1}{s} e^{-s t}}_{g} \cdot \underbrace{\cos w t}_{f}]_{0}^{\infty}-\int_{0}^{\infty}\left(-\frac{1}{s} e^{-j t}\right)(-\omega \sin \omega t) d k
$$

$$
=0-\left(-\frac{1}{s} \cdot 1 \cdot 1\right)-\frac{\omega}{s} \cdot \int e^{-s t} \sin \omega t d t
$$

$$
=\frac{1}{S}-\frac{w}{s} \cdot \mathcal{L}(\sin \omega t)
$$

$$
\mathscr{L}(\sin w t)=\int_{0}^{\infty} \underbrace{\frac{s}{e^{-s t}}}_{g^{\prime}} \underbrace{\sin w t}_{f} d t
$$

$$
=\left[-\frac{1}{s} e^{-s t} \sin w t\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{\omega}{s} e^{-v t} \cos \omega t d t
$$

$$
=0-\left(-\frac{1}{v} \cdot 1 \cdot 0\right)+\frac{\dot{w}}{v} \cdot \mathcal{L}(\cos w t)
$$

$$
=\frac{w}{s} \mathcal{L}(\cos \omega t)
$$

$$
\begin{aligned}
& \mathscr{L}(\sin \omega t)=: \mathscr{L}_{s} \\
& \mathcal{L}(\cos \omega t)=: \mathcal{L}_{c} \\
& \Rightarrow \mathcal{L}_{c}=\frac{1}{s}-\frac{\omega}{s} \mathscr{L}_{s} \Rightarrow \mathcal{L}_{c}=\frac{1}{s}-\frac{\omega}{s} \cdot \frac{\omega}{s} \mathcal{L}_{c} \\
& \mathscr{L}_{J}=\frac{\omega}{s} \mathcal{L}_{c} \hat{s} \quad \frac{1}{s}=\mathcal{L}_{c}+\frac{\omega^{2}}{s^{2}} \mathscr{L}_{c} \\
& =\frac{s^{2}+w^{2}}{s^{2}} \mathscr{L}_{c} \\
& \Rightarrow \mathscr{L}_{c}=\frac{1}{s} \cdot \frac{s^{2}}{s^{2}+w^{2}}=\frac{s}{s^{2}+w^{2}} \\
& \mathcal{L}_{s}=\frac{\omega}{s} \cdot \ell_{L}=\frac{\omega}{s} \cdot \frac{s}{s^{2}+w^{2}}=\frac{\omega}{\underline{s+w^{2}}}
\end{aligned}
$$

Some Functions $f(t)$ and Their Laplace Transforms $\mathscr{L}(f)$

	$f(t)$	$\mathscr{L}(f)$		$f(t)$	$\mathscr{L}(f)$
1	(1)	1/s	7	$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$
2	t	$1 / s^{2}$	8	$(\sin \omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
3	t^{2}	$\begin{aligned} & 2!/ s^{3} \\ & 3! \end{aligned}$	9	$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$
4	$(n=0,1, \cdots)$	$\frac{n!}{s^{n+1}} \boldsymbol{S}^{\boldsymbol{Y}}$	10	$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$
5	$\begin{gathered} t^{a} \\ (a \text { positive }) \end{gathered}$	$\frac{\Gamma(a+1)}{s^{a+1}}$	11	$e^{a t} \cos \omega t$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$
6	(eat	$\frac{1}{s-a}$	12	$e^{a t} \sin \omega t$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$

Example
Find the Laplace transform of the function

$$
\begin{aligned}
& f(t)=5 t^{3}-2 e^{t} \\
& \mathscr{L}(f)=\delta \cdot \mathscr{L}\left(t^{3}\right)-2 \cdot \mathcal{L}\left(e^{t}\right) \\
&=5 \cdot \frac{3!}{s^{4}}-2 \cdot \frac{1}{s-1}
\end{aligned}
$$

Theorem: First Shifting Theorem, s-Shifting
If $f(t)$ has the transform $F(s)$ (where $s>k$ for some k), then $e^{a t} f(t)$ has the transform $F(s-a)$ (where $s-a>k)$. In formulas,

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a),
$$

or, if we take the inverse on both sides,

$$
e^{a t} f(t)=\mathscr{L}^{-1}\{F(s-a)\}
$$

Proof:

$$
\begin{aligned}
\mathscr{L}\left\{e^{a t} f(t) \tilde{y}\right. & =\int_{0}^{\infty} e^{-s t} \cdot e^{a t} f(t) d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =F(s-a)
\end{aligned}
$$

If $F(s)$ exisb (ie., is finite), for $s>k$, then $F(s-a)$ apo exch for $s-a>l$.

Example
Find the inverse of the transform

$$
\mathscr{L}(f)=\frac{3 s-137}{s^{2}+2 s+401}
$$

We know: $\mathscr{L}\left\{e^{a t} \cos \omega t y=\frac{s-a}{\left.(s-a)^{2}+\omega\right)^{2}}\right.$

$$
\begin{aligned}
\left.\mathscr{L} L e^{a t} \sin \omega t\right\}=\frac{\left.(s-a)^{2}+\omega\right)^{2}}{(s-a)^{2}+\omega^{2}} \\
\begin{aligned}
\mathcal{L}^{-1} & =\mathcal{L}^{-1}\left\{\frac{3(s+1)-140}{(s+1)^{2}+400}\right\} \\
& =3 \cdot \mathcal{L}^{-1}\left\{\frac{s(1)=-a}{\left(s+n 1^{2}+(20)^{2}\right.}\right\}-7 \cdot \mathcal{L}^{-1}\left\{\frac{20}{(s t-1)^{2}+20^{2}}\right\} \\
& =3 \cdot e^{-t} \cos 20 t-7 e^{-t} \cdot \sin 20 t .
\end{aligned}
\end{aligned}
$$

Figure: Function $f(t)=e^{-t} \cdot(3 \cos 20 t-7 \sin 20 t)$.

Existence and Uniqueness of Laplace Transforms

1. $f(t)$ should satisfy the growth restriction

$$
\begin{equation*}
\exists M, k \text { s.t. } \forall t \geqq 0:|f(t)| \leqq M e^{k t} \tag{2}
\end{equation*}
$$

2. $f(t)$ should be piecewise continuous on a finite interval $a \leqq t \leqq b$ where f is defined. That is, this interval can be divided into finitely many subintervals in each of which f is continuous and has finite limits as t approaches either endpoint of such a subinterval from the interior.

Figure: A piecewise continuous function $f(t)$

Figure: $f(t)$ is not piecewise continuous.

Theorem: Existence Theorem for Laplace Transforms If $f(t)$ is defined and piecewise continuous on every finite interval on the semi-axis $t \geqq 0$ and satisfies (2) for all $t \geqq 0$ and some constants M and k, then the Laplace transform $\mathscr{L}(f)$ exists for all $s>k$.
Proof: Since $f(t)$ is piecewise continuous, $e^{\text {st }} f(t)$ is integrable over any finite number on the t-axis.

$$
\begin{aligned}
& |\mathcal{L}(f)|=|\int_{0}^{\infty} \underbrace{e^{-s t}}_{\geqslant 0} f(t) d t| \leqslant \int_{0}^{\infty}|f(t)| \cdot e^{-s t} d t \\
& \text { (2) } \int_{0}^{\infty} M \cdot e^{k t} \cdot e^{-s t} d t=\frac{M}{s-k} \quad \text { (if } s>k \text {) }
\end{aligned}
$$

$\Rightarrow \mathcal{L}(f)$ exist for all $s>k$

Uniqueness

If the Laplace transform of a given function exists, it is uniquely determined. Conversely, it can be shown that if two functions (both defined on the positive real axis) have the same transform, these functions cannot differ over an interval of positive length, although they may differ at isolated points. Hence we may say that the inverse of a given transform is essentially unique. In particular, if two continuous functions have the same transform, they are completely identical.

References

The material of this lecture was based on Chapter 6.1 of the book Advanced Mathematical Engineering by Erwin Kreyszig (John Wiley \& Sons, 10th edition, 2011)
and Chapter 6 in
Differential Equations Demystified by Steven G. Krantz (McGraw-Hill, 2005).

Moreover, we recommend the lecture notes by Morten Nome (in Norwegian), who taught the 2019 edition of this course. You can download Lecture 1 of Morten's lecture notes collection here:
https://www.math.ntnu.no/emner/TMA4125/2019v/notater/ 01-laplacetransform.pdf

