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Solving linear ODEs and related initial value problems
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What is a transform?

The idea of a transform is that it turns a given function into another
function. We are already acquainted with several transforms:

1. The derivative D takes a differentiable function f (defined on some
interval (a,b)) and assigns to it a new function Df := f’.

2. The integral I takes a continuous function f (defined on some
interval [a,b]) and assigns to it a new function

If(t):= / f(z)dx.

3. The multiplication operator My, which multiplies any given function
f on the interval [a, b] by a fixed function ¢ on [a, b], is a transform:

My f(t) := ¢(t) - f(D).



We are particularly interested in transforms that are linear. A transform
T is linear if for some functions f, g and constants o, 8 € R

(710 + 59 = aT() + 5700). |
In particular (taking « = g = 1),

Tif+91=T(f)+T(g),
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and (taking 8 = 0)




Definition: Laplace transform
Given a function f( ) (f : Ry — R), its Laplace transform is defined as

Oufp/d ~F(s) ‘ /‘_Stf dt.

The given function f(t) is called the inverse transform of F(s) and is
denoted by ¥~ ( ). Note that the above integral is an improper
integral, which is evaluated according to the rule

U R ]
Remark

Original functions are denoted by lowercase letters and their transforms
by the same letters in capital, so that F(s) denotes the transform of
f(t), and Y (s) denotes the transform of y(t), and so on.




Laplace Transform

Figure: Pierre-Simon, marquis de Laplace, 23 March 1749 — 5 March 1827,
French astronomer and mathematician.



Example
Let f(t) =1 when ¢t 2 0. Find F(s
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Example
Let f(t) = e when ¢t = 0, where a |s a constant Find F(s
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Figure: Visual verification that the Laplace transform of e exists only if s > a:

Functions e** with s = 5 and f(t) = ¢*' with a = 2.
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Figure: Visual verification that the Laplace transform of €' does not exists if
s < a: Functions e with s = 2 and f(t) = e with a = 5.
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A Non-Working Example

Example
Does the Laplace transform of f(t) = e exist?
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Figure: Functions f(t) = e

and e *! for s = 2.
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Theorem: Linearity of the Laplace Transform

The Laplace transform is a linear operation; that is, for any functions f
and g whose transforms exist and any constants a and b the transform of
af(t) 4+ bg(t) exists, and

Lf{af +bg(t)} = aZ{f(t) }+b$ﬁ
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Example

Find the transforms of coshat and sinhat. (e R , R4 O)
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Example
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Some Functions f(¢) and Their Laplace Transforms Z(f)
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Example
Find the Laplace transform of the function

f(t) =563 — 2¢".
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Theorem: First Shifting Theorem, s-Shifting
If@has the transform F'(s) (where s > k for some k), then I
has the transform F'(s —a) (where s —a > k). In formulas,
2T = F(s — )

or, if we take the inverse on both sides,
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Example
Find the inverse of the transform
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Figure: Function f(t) = ™" - (3 cos 20t — 7sin 20t).
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Existence and Uniqueness of Laplace Transforms

1. f(t) should satisfy the growth restriction

}iM,ks.t. ¥ 0 |f(1)] §Mea R)

2. f(t) should be piecewise continuous on a finite interval a £ ¢t < b
where f is defined. That is, this interval can be divided into finitely
many subintervals in each of which f is continuous and has finite
limits as ¢t approaches either endpoint of such a subinterval from the
interior.
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Figure: A piecewise continuous function
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Figure: f(¢) is not piecewise
continuous. —
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Theorem: Existence Theorem for Laplace Transforms

If f(t) is defined and piecewise continuous on every finite interval on the
semi-axis t = 0 and satisfies (2) for all ¢ = 0 and some constants M and
k, then the Laplace transform .Z(f) exists for all s > k. -y
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Uniqueness

If the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both
defined on the positive real axis) have the same transform, these
functions cannot differ over an interval of positive length, although they
may differ at isolated points. Hence we may say that the inverse of a
given transform is essentially unique. In particular, if two continuous
functions have the same transform, they are completely identical.
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