Mathematics 4N

Mandatory problems

1 Compute the following integrals and show your work in detail:
a) $\int_{0}^{\infty} \frac{\cos (x w)+w \sin (x w)}{1+w^{2}} d w$ (This exercise can be found in Kreyszig, p. 517, but note that there is a typo there.) Hint: Calculate the representation of the function

$$
f(x)= \begin{cases}0 & (x<0) \\ \pi \exp (-x) & (\text { else })\end{cases}
$$

by a Fourier integral.
b) $\int_{0}^{\infty} \frac{1-\cos (\pi w)}{w} \sin (x w) d w$. Hint: Calculate the representation of the function

$$
f(x)= \begin{cases}\pi / 2 & (0<x<\pi) \\ 0 & (\text { else })\end{cases}
$$

by a Fourier integral.

2 For some positive constant $\alpha>0$, define the function

$$
f(x)= \begin{cases}1 & (|x|<\alpha) \\ 0 & \text { (else) }\end{cases}
$$

and show that its Fourier transform is

$$
\hat{f}(w)=\sqrt{\frac{2}{\pi}} \frac{\sin (\alpha w)}{w} .
$$

3 Compute the Fourier transform of the following functions:
a) $f(x)= \begin{cases}0 & (x \leq 0) \\ \exp (-x) & (x>0)\end{cases}$
b) $f(x)= \begin{cases}1-x^{2} & (-1 \leq x \leq 1) \\ 0 & (|x|>1)\end{cases}$
c) $f(x)= \begin{cases}T+x & (-T \leq x<0) \\ T-x & (0 \leq x \leq T) \\ 0 & (|x|>T)\end{cases}$

4 Compute the convolution

$$
(f * f)(x)=\int_{-\infty}^{\infty} f(x-p) f(p) d p
$$

for the function $f(p)=\frac{1}{p^{2}+\lambda^{2}}$ for a given $\lambda>0$.

Additional exercises

These additional exercises are completely optional and should not be handed in. The student assistants will not grade these problems.

5 Compute the Fourier transform of

$$
f(x)= \begin{cases}\sin (x) & (-\pi<x<\pi) \\ 0 & (\text { else })\end{cases}
$$

and calculate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin (\pi w) \sin (\pi w / 2)}{1-w^{2}} d w .
$$

6 Let $f(x)=\exp \left(-x^{2}\right)$ and $g(x)=x \exp \left(-x^{2}\right)$. Show that

$$
f * g=-\frac{i}{4} \int_{-\infty}^{\infty} w \exp \left(-\frac{w^{2}}{2}\right) \exp (i w x) d w
$$

7 Find the Fourier transform of $f(x)=x^{2} \exp \left(-x^{2}\right)$. (Hint: It might be useful to differentiate $\exp \left(-x^{2}\right)$ twice.)

