TMA4130 MATEMATIKK 4N SOLUTIONS: 7TH WEEK

1.

(i) Notice that the function $v(t,x) = u(t,x) - (U_1 + (U_2 - U_1)x/L)$ satisfies

$$\frac{\partial v}{\partial t} = \frac{\partial u}{\partial t}, \qquad \frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 u}{\partial x^2},$$

so if u solves the heat equation with the boundary conditions $u(t,0) = U_1$, $u(t,L) = U_2$, then v satisfies the heat equation

$$\frac{\partial v}{\partial t} = c^2 \frac{\partial^2 v}{\partial x^2}$$

with the boundary conditions

$$v(t,0) = u(t,0) - U_1 = 0,$$
 $v(t,L) = u(t,L) - U_1 - (U_2 - U_1)L/L = 0.$

Therefore we can write v as

$$v(t,x) = \sum_{n>0} B_n \sin\left(\frac{n\pi}{L}x\right) e^{-(cn\pi/L)^2 t},$$

with

$$B_n = \frac{2}{L} \int_0^L (u(0,x) + (U_1 + (U_2 - U_1)x/L)) \sin\left(\frac{n\pi}{L}x\right) dx,$$

and hence

$$u(t,x) = U_1 + (U_2 - U_1)\frac{x}{L} + \sum_{n \ge 0} B_n \sin\left(\frac{n\pi}{L}x\right) e^{-(cn\pi/L)^2 t}.$$

Therefore in the $t \to \infty$ limit, the temperature profile is linear:

$$\lim_{t \to \infty} u(t, x) = U_1 + (U_2 - U_1) \frac{x}{L}$$

- (ii) This is Example 4 of cap. 12 sec. 6.
- **2.** Taking the hint and setting $v(t,x) = u(t,x) + Hx(x-\pi)/(2c^2)$ we find that

$$\frac{\partial v}{\partial t} = \frac{\partial u}{\partial t}, \qquad \frac{\partial^2 v}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + H(x - \pi) + Hx \right) = \frac{\partial^2 u}{\partial x^2} + H/c^2.$$

Therefore if u solves

$$\frac{\partial v}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} + H,$$

then v solves

$$\frac{\partial v}{\partial t} = c^2 \frac{\partial^2 v}{\partial x^2}.$$

The boundary conditions are

$$v(t,0) = u(t,0) = 0,$$
 $v(t,\pi) = u(t,\pi) = 0.$

Solving the equation for v we find:

$$v(t,x) = \sum_{n>0} B_n \sin(nx)e^{-(cn)^2 t}$$

with

$$B_n = \frac{2}{\pi} \int_0^{\pi} (u(0, x) + Hx(x - \pi)) \sin(nx) dx$$
$$= \frac{2}{\pi} \int_0^{\pi} u(0, x) \sin(nx) dx + \frac{H}{n} \left((-1)^{n+1} (\pi^2 - \pi) + \frac{2}{n^2} ((-1)^n - 1) \right).$$

Finally we express the solution in terms of u:

$$u(t,x) = \sum_{n>0} B_n \sin(nx) e^{-(cn)^2 t} - Hx(x-\pi).$$

3. We apply separation of variables u(x,y) = F(x)G(y). The equation becomes:

$$G\frac{\mathrm{d}^2 F}{\mathrm{d}x^2} = -F\frac{\mathrm{d}^2 G}{\mathrm{d}y^2}$$
$$\frac{1}{F}\frac{\mathrm{d}^2 F}{\mathrm{d}x^2} = -\frac{1}{G}\frac{\mathrm{d}^2 G}{\mathrm{d}y^2}.$$

These give us the ODEs

$$\frac{\mathrm{d}^2 F}{\mathrm{d}x^2} = -kF, \qquad \frac{\mathrm{d}^2 G}{\mathrm{d}u^2} = kG.$$

These have the solutions, respectively,

$$F(x) = A^{**}e^{\sqrt{-k}x} + B^{**}e^{-\sqrt{-k}x}$$
$$G(y) = C^{**}e^{\sqrt{k}y} + D^{**}e^{-\sqrt{k}y}.$$

We apply the top and bottom insulation boundary conditions that

$$\frac{\partial u}{\partial y}(x,0) = 0,$$
 $\frac{\partial u}{\partial y}(x,a) = 0,$ for $x \in (0,a).$

To apply these conditions we differentiate u in y, which is

$$\frac{\partial u}{\partial y} = F \frac{\mathrm{d}G}{\mathrm{d}y}.$$

We are compelled by the boundary conditions to conclude that

$$\frac{\mathrm{d}G}{\mathrm{d}y}(0) = \frac{\mathrm{d}G}{\mathrm{d}y}(a) = 0.$$

These in turn restrict k to some negative $-p^2$. Writing

$$G(y) = C^* \cos(py) + D^* \sin(py),$$

so that

$$\frac{\mathrm{d}G}{\mathrm{d}y} = -C^*p\sin(py) + D^*p\cos(py)$$

we see that the insultation condition at y=0 implies $D^*=0$, and the insulation condition at y=a implies the quantization of p into only taking values $p=n\pi/a$ for $n=0,1,\ldots$ Therefore we can write

$$G_n(y) = C_n^* \cos\left(\frac{n\pi}{a}y\right),$$

with the constant C_n^* to be determined by the other boundary conditions.

Taking this information to solve the equation for F we find that

$$F_n(x) = A_n^{**} e^{n\pi x/a} + B_n^{**} e^{-n\pi x/a} = A_n^* \cosh\left(\frac{n\pi}{a}x\right) + B_n^* \sinh\left(\frac{n\pi}{a}x\right).$$

(This is just expressing F_n in another basis — or, take $A_n^* = (A_n^{**} + B_n^{**})/2$ and $B_n^* = (A_n^{**} - B_n^{**})/2$.) Since u(0, y) = 0, we find that $F_n(0) = 0$, so $A_n^* = 0$. That leaves us with

$$u(x,y) = \sum_{n>0} C_n \cos\left(\frac{n\pi}{a}y\right) \sinh\left(\frac{n\pi}{a}x\right),$$

where $C_n = C_n^* B_n^*$. Notice that this means $C_0 = 0$.

We still have one boundary condition to use. Setting x = a, we find

$$f(y) = u(a, y) = \sum_{n>0} C_n \sinh(n\pi) \cos\left(\frac{n\pi}{a}y\right).$$

This is a cosine series from which we can extract an expression for C_n assuming convergence of the series foregoing by

$$C_n = \frac{2}{a \sinh(n\pi)} \int_0^a f(y) \cos\left(\frac{n\pi}{a}y\right) dy$$

for n > 0.

- 4. This question is about evaluating Fourier transforms.
 - (i) We use the fact that the Fourier transform of $e^{-|x|}$ is $2\pi^{-1/2}(1+x^2)^{-1}$.

$$C(p) = \int_{\mathbb{R}} \frac{1}{1+x^2} e^{-ipx} dx = \pi e^{-|p|}$$

See also Sheet 5, Problems 2(iii) and 3(ii).

(ii) Again we use the fact that the Fourier transform of $\mathbb{1}_{[-1,1]}$ is $2(2\pi)^{-1}\sin(x)/x$:

$$C(p) = \int_{\mathbb{R}} \frac{\sin(x)}{x} e^{-ipx} dx = \pi \mathbb{1}_{[-1,1]}(p).$$

See also Sheet 5, Problems 2(ii) and 3(ii).

(iii) Finally integration against the delta function is evaluation at 0 (see Lecture III).

$$C(p) = \int_{\mathbb{R}} \delta(x)e^{-ipx} dx = e^{ip(0)} = 1.$$