TMA4130 MATEMATIKK 4N SOLUTIONS: 7TH WEEK

(i) Notice that the function v(¢,z) = u(t,x) — (Uy + (U2 — U1)z/L) satisfies
ov  Ou v d%u

ot ot’ 02 da¥’

so if u solves the heat equation with the boundary conditions u(t,0) = Uy, u(t,L) =

then v satisfies the heat equation
ov 2 0%
ot 0x?
with the boundary conditions
v(t,0) = u(t,0) — Uy =0, v(t,L) =wu(t,L) — Uy — (Uy—Uy)L/L = 0.

Therefore we can write v as

with

Bu=2 /OL(U(O,:I:) + (U1 + (Us — Uy)z/L)) sin <"—L”x) dz,

and hence

u(t,z) = U1 + (U2 — Ul)% + ) Bysin <"f”$> o (enm/L)%

n>0
Therefore in the ¢ — oo limit, the temperature profile is linear:

. x
tllglou(t,x) =U; + (Uz - Ul)Z'

(ii) This is Example 4 of cap. 12 sec. 6.
2. Taking the hint and setting v(t,2) = u(t,z) + Hz(z — 7)/(2¢?) we find that

ov  Ou 8211 0 [ 0Ou 82

ox
Therefore if u© solves

ov 2 0%u

— =c¢"—= +H,
ot
then v solves
ov 2 0%
ot 0x?

The boundary conditions are
v(t,0) = u(t,0) =0, v(t,m) =u(t,m) =0.

Solving the equation for v we find:
Z B, sin(nz)e ~(en)?t

n>0
with
2
;/ w(0,z) + Hz(x — 7)) sin(nz) dx
0
2 H n+ly, 2 2 n
;/0 w(0, z) sin(nx) do + — - <(—1) i —7T)—|-ﬁ((—1) —1)).
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Finally we express the solution in terms of u:

u(t,z) = Z B, sin(nm)e_(m)zt — Hzx(x — ).
n>0

3. We apply separation of variables u(x,y) = F(z)G(y). The equation becomes:

qEE _ &G
dx? dy?
1 d*°F 1 d*G
Fda?2 ~  Gdy?’
These give us the ODEs ) )
d°F d-G
I —kF, d_yz = kG.
These have the solutions, respectively,

F(CIZ) :A**e\/Tkm + B**e—\/Tkw

G(y) —C*eVhy 4 prre—Vhy,
We apply the top and bottom insulation boundary conditions that

g—Z(m,O) =0, g—:(a:,a) =0, for x € (0,a).
To apply these conditions we differentiate w in y, which is
ou_ pdc
dy dy
We are compelled by the boundary conditions to conclude that
dG dG
—0)=-""Z(a)=0
0=

These in turn restrict k to some negative —p?. Writing
G(y) = C" cos(py) + D" sin(py),
so that

dG

G = ~Cpsin(pw) + Dpeos(py)
we see that the insultation condition at y = 0 implies D* = 0, and the insulation condition at y = a
implies the quantization of p into only taking values p = nw/a for n = 0,1,.... Therefore we can
write

Gn(y) = C;, cos <Z—ﬂy>

with the constant C}; to be determined by the other boundary conditions.
Taking this information to solve the equation for F' we find that

Fp(x) = A% ™/ 4 B e m8/a — A* cosh <E$> + B! sinh (Ex)
a a

(This is just expressing F,, in another basis — or, take A¥ = (AX*+B;*)/2 and B}, = (A} —B}*)/2.)
Since u(0,y) = 0, we find that F,(0) =0, so A} = 0. That leaves us with

nmw . nmw

u(z,y) = Z C), cos <7y) sinh (7m>,
n>0

where C,, = C*B*. Notice that this means Cy = 0.

n-—n-
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We stlil have one boundary condition to use. Setting x = a, we find

f(y) = u(a,y) = > Cpsinh(nr) cos (%ﬂy)

n>0
This is a cosine series from which we can extract an expression for C), assuming convergence of the

series foregoing by
2 a nm
Cph=—77"7"7— —uy | d
asinh(mr)/o U COS( a y) Y

for n > 0.

4. This question is about evaluating Fourier transforms.
(i) We use the fact that the Fouier transform of e~1#! is 27~ 1/2(1 4 22)~ 1.
1 .
C(p) = e~ dg = me Pl
(p) /]R 14 22 i

See also Sheet 5, Problems 2(iii) and 3(ii).
(ii) Again we use the fact that the Fourier transform of 1j_; 1 is 2(27) " tsin(z) /2

X

See also Sheet 5, Problems 2(ii) and 3(ii).
(iii) Finally integration against the delta function is evaluation at 0 (see Lecture III).

C(p) = / §(z)e™ P dr = eir(0) — 1.
R



