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TMA4130 MATEMATIKK 4N SOLUTIONS: 5TH WEEK

(i) Since the Fourier transform of the even extension of g(z) = e™"1jg o) is (2m)~1/2(1 + £2)~1
it holds by the inversion formula that

e_|x| — z /OO COS(SU'LU) dw,
™ Jo 1"1"11)2

likewise the odd extension of ¢ has the Fourier transform (27)~'/2¢(1 4 £2)~!. Therefore

_ 2 [ wsin(zw)
¢ Ljg,00) = €L (o0 = ;/0 ez

Therefore it remains only to invoke linearity and add up the two to get

dw = e_w]l[opo) — 1/2]1{0}.

1 /°° cos(zw) + wsin(zw)
T Jo

1+ w?
(ii) By considering the odd function f(z) = m/2-sgn(x), and integral

27 rapsinuy) ay = =)

we can repeat the calculations in (i). However, we provide another, perhaps more tedious,
but simpler derivation:
First notice that by Example 2 of cap. 11 sec. 7 in the book,

. o - 1 x>0
2 [ 2 [
_/ sin(zw) dw:—/ sin(zw) daw) = 0 2
™ Jo w ™ Jo Tw 1 <0
Similarly, by inspecting the point x = 0, for = > 0,
2 [ cos 2 [ cos
_/ Msin(xw) dw =_/ Msin(y) dy
™ Jo w ™ Jo Y
1 0<7m/z<1
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0 m/x >1
1 <<
=dq1/2 r=7

0 0<zx<m

and this integral is odd as a function of .
Therefore the difference is given by: (drawing a picture makes this easier)

0 r< —m
2/°°1—cos(7rw) -1 —7m<2x<0
0

— ” sin(zw) dw = 1 Ocazen’
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and given by the midpoints of jumps at the jumps.
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2.
(i) The point here is that the Fourier transform of the Gaussian is also a Gaussian, and the
flatter the Gaussian is in the physical domain, the sharper is its Fourier transform:
1 . 1 N2 e (s V)2 —€2/(4N)
— [ f@)e ™ dr =—= [ ¢ Az? =izl —(if/ (2VA))?  =€2/(4N) 4
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(ii) This is of course also in the book:
L/ f(z)e ™= dg L " e dg
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(iii) This is also a result of direct integration:
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(iv) Finally, we integrate again:
\/1 / f(x)e ¢ dx _ L 1 |z]e”¢ dz
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(i) simply put —z in place of z in the integral in equation (4) of cap. 11 sec. 9, and observe
that the integral separates to:

o=t iw(—2—v)
I ;B)—zﬂ/R/Rf(v)e dvdw

:\A/LQ_W/R <\/L2_7T/Rf(v)e_m” dv) e~ du
).

That is, the double transform is given by a reflection.
(ii) Using 2(iii), we see that
2\ 1 / —Az| —izé
=2 =—— | e e dz.
V2T (©) Ve Jr
Therefore from 3(i),
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(iii) By the convolution properties of the Fourier transform,

T =2 e

The inverse transform of e =2l is its Fourier transform with a reflection.
1 4
V2r AN 4 €
Multiplying in the constants we arrive at:
V2r 1
(f = F)(&) = NIt

4. Applying the manipulations already described in the question, this is a fairly straightforward
problem:

1 Y+ico
— F(s)e ds
270 )y —ico

1 ) .
=— (/ flw)e 1e v dw> el dr
271' R R

:%//f(w)e%t_w)e”(t_w) dwdr.
R JR

Now apply the inversion formula for the function g(w) = f(w)e?®~®) and the result falls out.



