TMA4130 MATEMATIKK 4N SOLUTIONS: 3RD WEEK

(i) The boundedness conditions simply ensures that the convolution exist. Taking the Laplace
transform of the equation we arrive at

(s> 4+ 25 — 8)Ly — sa —a = Lr.

Re-arranging we have:

B 1 (s+1)
S PO TPy S Py PO
Using partial fractions we find:
1 _1/6 B 1/6
(s—2)(s+4) (5—2) (s+4)
s+1 1 3 o —1/2 3/2

(s—2)(s+4) s+4 (s=2)(s+4) (s—2) (s+4)

The inverse Laplace transforms are:

Himmera) ~ 5 e

_ (-+1) 1 B
ey m ol e

Therefore,
1 [ 20 —dv a 2t —4t
y(t)zé r(t—v)(e” —e )dv+§(—e +3e™ ).
0

(ii) Taking a derivative we see that

()= [

Using partial fractions we see that
-1 1 1

s(s—1) s s—1

The inverse Laplace transform of the above is

fit)y=1—¢"
Therefore the inverse Laplace transform of log(s/(s — 1)) is
(e' —1)/t.

(i) Applying the Laplace transform,

(o) = (55 55) (o) + (o))
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Re-arranging we get:
Ly [(s—1 -1 )‘1 <y1(0)>
EyQ B 5 S + 3 yQ(O)
_ 1 s+3 1 y1(0)
S s2425+2\ =5 s—1) \1(0)

e () (1)

Using partial fractions, the inverse transforms are:

1 vy
m ~r e tSlD(t):ZA
s—1 s+1 2 L'y e _
GIIPTl Grif+l Genpel ¢ st —2emsin() =B
s+3 s+1 2 £ty

o et eos(t) + 27 sin(t) =: C.

GH12+1 (H12+1  (s+12+1
The solution is therefore:
y1(t) =y1(0)C 4 42(0) A
ya(t) = — by1(0)A + y2(0)B.
Subsituting in the functions we arrive at:
t 0 2y1(0 0 _
(i) = (o)<~ o0+ (o) iy )~ 'sn

(i) If (y1(0),y2(0)) # 0, as t — oo, because the real parts of the exponents in both eigenfunctions
are negative, (y1(0),42(0)) — (0,0) nevertheless.
(iii) Again we first apply the Laplace transform directly:

(an) =6 ) (@) Giw)
Next we re-arrange the equation:
() =520 (o)
e (82 (o)

Using partial fractions, the inverse transforms are:

1 1 1 e 9
= — —e' = A
(s=1)(s—2) s—2 s—1 ¢ te
s+1 -2 3 -t " 2t
= -2 3e” = B
(s—1)(s—2) 3—14—3—2W ¢ roe
s—4 3 2 1

= - t_2e% = C.
Go-2) s—1 s—a 3¢ 2 =0

The solution is therefore:
y1(t) =y1(0) B — 2y2(0)A
y2(t) =3y1(0)A + y2(0)C.
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Subsituting in the functions we arrive at:

yi(t)\  [(—2y1(0) + 2y2(0) ol 3y1(0) — 2y2(0) Q2
(yz(t)) B (—3y1(0) +3y2(0)) - (3311(0) - 2y2(0)) '

(iv) Notice that by settng either vector to (8), (y1(0),92(0)) = (0,0) is the only solution of the
simultaneous equations. As both exponentials tend to infinity as t — oo, if (y1(0),y=2(0)) #
(0,0), then the solution tends to infinity as ¢ — oo.

(i) This is example 11.2.5 in the book, with a shift.
Obviously if f(z) = h(z + «), and f is 27-periodic, then
f(z)e™ ™ dx = ei”a/ h(z)e™ "™ da.
Write h for the function in example 11.2.5. Our function f is given by h(z —7) = 27 f(z).
In the book they derived

sin(nx) einT _ o—in
h = — — (1" = — _— = n_
(@)=m—2> ()= 2y (=D
n>1 n>1
So
1 o0 1 einTeinT _ g—ine o —inm 1 1 sin(nz)
== - — -)'==—— .
f(@) 26 T Z 2in (=1) 2 7w Z n

n>1 n>1

(ii) This is an even function on [—m,7), therefore it suffices to compute the cosine coefficients
(the remaining are nought):

TTan, =/ |t| cos(nt) dt

—T

0 T
=— / t cos(nt) dt —I—/ t cos(nt) dt
0

—T

- 0 01 1
=—rtsin(nt)| + / — sin(nt) dt + —tsin(nt)
n . n n

—T

0 ™1
- / — sin(nt) dt
—r o n

-1 0 T
=— cos(nt)

1 .
= + 3 cos(nt)

0

-7
2
n2

(=" - 1)

For ag we can integrate directly/use area formula for triangles to get ag = /2.

(i) It is easier to work directly with e=** here. For n # 0,

n s

™ . —1 . .
/ Q:Qe—mx dr =— x2e—znz + = re” T dg
- n . in
1, a2 2
—— .’L‘26 inx + —we inT -5 e T qu
in . n DS (R
4

=0+ —(=1)" -0,

as €™ =~ = (—1)" and [T e "™ dz =0.
This is of course the cosine series which can be seen both from the fact that the function
is even over [—m, ) and the fact that result is real.
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Therefore,
1 " 2 4 n
— x“ cos(nz) do = —(—1)".
) . n

For n = 0, we have that

1 T 1
— 22 dz = =72
2 J_,
(ii) We see that the function f satisfies the assumptions of the convergence theorem, therefore

on [—m,m),

n
n=1
Putting x = 7 gives us
72 =1
T
n=1
If
> b=
2 -
n=1 n
since - - -
1 1 1
dm=) ot O 7
—n = (2n) = (2m+1)
it holds that -
Z 1 _ SC
==
= (2m + 1) 4

Therefore,



