- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4130/35 Mathematics 4N/4D

Academic contact during examination: Anne Kværnø ${ }^{\text {a }}$, Kurusch Ebrahimi-Fard ${ }^{\text {b }}$, Xu Wang ${ }^{\text {c }}$
Phone: ${ }^{\text {a }} 92663824$, ${ }^{\text {b }} 9691$ 1985, ${ }^{\text {c }} 94430343$

Examination date: December 142018
Examination time (from-to): 09:00-13:00
Permitted examination support material: Code C: Approved calculator
One yellow, stamped A5 sheet with own handwritten formulas and notes (on both sides)

Other information:

- All answers have to be justified, and they should include enough details in order to see how they have been obtained.
- There are two versions of Problem 3: one for Mathematics 4 N and one for Mathematics 4D.
- Good Luck!

Language: English

Number of pages: 4
Number of pages enclosed: 1
Checked by:

```
Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig }\square\quad\mathrm{ 2-sidig }
sort/hvit \boxtimes farger
skal ha flervalgskjema
```

Problem 1 Laplace Transform [20 points]
a) Compute Laplace transform of

$$
f(t)=t e^{t}
$$

b) Compute the inverse Laplace transform $\mathcal{L}^{-1}(F)(t)$ of the following function

$$
F(s):=\frac{s+3}{s(s-1)(s+2)} .
$$

(Hint: you can use partial fraction decomposition).
c) Use Laplace transform to find the solution of

$$
y^{\prime}(t)-y(t)=e^{t}+e^{-t}, \quad \text { with } y(0)=\pi
$$

Problem 2 Fourier Series and Transform [14 points]

a) Let $\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}$ be the complex Fourier series of the following function

$$
f(x)=1-x^{2}, \quad x \in(-\pi, \pi) .
$$

Compute c_{n}.
b) Compute the Fourier transform of

$$
f(x)=x e^{-|x|}
$$

Problem 3 TMA4130 Mathematics $4 N$: Fourier Transform [6 points]
Show that for $a \neq 0$

$$
\mathcal{F}(f(a t))(\omega)=\frac{1}{|a|} \mathcal{F}(f(t))\left(\frac{\omega}{a}\right)
$$

Problem 3 TMA4135 Mathematics 4D: Partial Derivative [6 points] Show that the heat kernel $h(x, t):=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$ satisfies $h_{t}=\frac{1}{2} h_{x x}$.

Problem $4 \quad$ Partial Differential Equations [10 points]
Solve the following heat equation

$$
u_{t}=\frac{1}{2} u_{x x}, \quad t \geq 0, \quad 0 \leq x \leq \pi,
$$

with the boundary conditions

$$
u(t, 0)=u(t, \pi)=0, \forall t \geq 0
$$

and the initial condition

$$
u(0, x)=\sin 3 x+\sin 5 x, \forall 0 \leq x \leq \pi
$$

Problem $5 \quad$ Polynomial Interpolation [10 points]
Find a polynomial $p(x) \in \mathbb{P}_{2}$ interpolating the points

$$
\begin{array}{c|cccc}
x_{i} & -2 & 0 & 1 & 2 \\
\hline y_{i} & 0 & 1 & 9 / 8 & 0
\end{array} .
$$

Problem 6 Numerical Integration [10 points]
The integral

$$
\int_{a}^{b} f(x) d x
$$

can be approximated by the quadrature formula

$$
Q(a, b)=\frac{3 h}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right),
$$

with

$$
h=\frac{b-a}{3}, \quad x_{1}=a+h \quad \text { and } \quad x_{2}=a+2 h .
$$

a) Apply the quadrature rule to the integral

$$
\int_{1}^{2} x \ln (x) d x
$$

b) Find the degree of precision of the quadrature rule. You can use the interval $[a, b]=[-1,1]$.

Problem 7 Numerical Solution of Nonlinear Equations [10 points]

a) The following pyhton-code is given:

```
x = 2.5
for k in range(100):
    x_new = (3*x**4 + 24*x**2 -16)/(8*x**3)
    # Stop the iterations when ..
    x = x_new
```

Write down the fixed point iteration scheme which is implemented here.
Suggest an appropriate stopping criterium, and write down the corresponding python code.
b) Given that the fixed point r is known, and all computations are done with very high accuracy. In this case, the error $e_{k}=\left|r-x_{k}\right|$ for each k would be printed out as follows:

```
k = 1, error = 9.50e-03
k = 2, error = 1.06e-07
k = 3, error = 1.49e-22
k = 4, error = 4.14e-67
```

Use this to estimate the rate of convergence for this iteration scheme.

Problem 8 Ordinary Differential Equations [10 points]

The following Runge-Kutta method is given:

$$
\begin{aligned}
\mathbf{k}_{1} & =\mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right), \\
\mathbf{k}_{2} & =\mathbf{f}\left(x_{n}+\frac{h}{2}, \mathbf{y}_{n}+\frac{h}{2} \mathbf{k}_{1}\right), \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+h \mathbf{k}_{2} .
\end{aligned}
$$

a) Do one step with step size $h=0.1$ using the above method on the problem:

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{1}+x y_{2}^{2}, & y_{1}(1)=1.0 \\
y_{2}^{\prime}=y_{1} y_{2}, & y_{2}(1)=-1.0
\end{array}
$$

b) Find the stability function $R(z)$ for this function. Find also the corresponding stability interval.

Problem $9 \quad$ Finite difference scheme [10 points]
In this exercise you are asked to set up a finite difference scheme for the two point boundary value problem

$$
u^{\prime \prime}+2 u=x^{2}, \quad u^{\prime}(0)+u(0)=0, \quad u(1)=2,
$$

defined on the interval $0 \leq x \leq 1$.
Let N be the number of grid points with $h=1 / N$, and let U_{i} be the approximations to the exact solution $u\left(x_{i}\right)$ in the gridpoints $x_{i}=i h$ for $i=0,1, \ldots, N$. Set up the finite difference scheme for a general N in the form

$$
A \mathbf{U}=\mathbf{b},
$$

where $\mathbf{U}=\left[U_{0}, U_{1}, \ldots, U_{N}\right]^{T}$, that is, set up the matrix A and the vector \mathbf{b}.

Fourier Transform

$f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{i w x} \mathrm{~d} w$	$\hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i w x} \mathrm{~d} x$
$e^{-a x^{2}}$	$\frac{1}{\sqrt{2 a}} e^{-w^{2} / 4 a}$
$e^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \frac{a}{w^{2}+a^{2}}$
$\frac{1}{x^{2}+a^{2}}$	$\sqrt{\frac{\pi}{2}} \frac{e^{-a\|w\|}}{a}$
$\begin{cases}1 & \text { for }\|x\|<a \\ 0 & \text { otherwise }\end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin w a}{w}$

Laplace Transform

$f(t)$	$F(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (\omega t)$	$\frac{s}{s^{2}-\omega^{2}}$
$\sinh (\omega t)$	$\frac{\omega}{s^{2}-\omega^{2}}$
t^{n}	$\frac{\Gamma(n+1)}{s^{n+1}}$,
$e^{a t}$	$\frac{1}{s-a}$
$\delta(t-a)$	$e^{-a s}$

$\begin{aligned} \int x^{n} \cos a x \mathrm{~d} x & =\frac{1}{a} x^{n} \sin a x-\frac{n}{a} \int x^{n-1} \sin a x \mathrm{~d} x \\ \int x^{n} \sin a x \mathrm{~d} x & =-\frac{1}{a} x^{n} \cos a x+\frac{n}{a} \int x^{n-1} \cos a x \mathrm{~d} x\end{aligned}$

