## Problem 1

Let $f$ be the $2 \pi$-periodic functions defined by $f(x)=\cos \left(\frac{x}{2}\right)$ when $x \in$ $[-\pi, \pi]$. Make a drawing of the function $f$ for the interval $[-3 \pi, 3 \pi]$, and compute the Fourier series of $f$. Use the result to compute the value of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1-4 n^{2}}
$$

## Possible Solution

First observe that $f(-x)=\cos \left(\frac{-x}{2}\right)=\cos \left(\frac{x}{2}\right)$, so $f(x)$ is an even function. Then the Fourier series of the function $f(x)$ is of the form

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x) .
$$

Then

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x \\
& \left.=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\frac{x}{2}\right) d x=\frac{1}{\pi} \frac{\sin \left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_{x=0}^{x=\pi}=\frac{2}{\pi},
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \cos \left(\frac{x}{2}\right) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}\left(\cos \left(\frac{2 n+1}{2} x\right)+\cos \left(\frac{2 n-1}{2} x\right)\right) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\frac{2 n+1}{2} x\right)+\cos \left(\frac{2 n-1}{2} x\right) d x \\
& =\frac{1}{\pi}\left(\frac{2}{2 n+1} \sin \left(\frac{2 n+1}{2} x\right)+\frac{2}{2 n-1} \sin \left(\frac{2 n-1}{2} x\right)\right]_{x=0}^{x=\pi} \\
& =\frac{1}{\pi}\left(\frac{2}{2 n+1} \sin \left(\frac{2 n+1}{2} \pi\right)+\frac{2}{2 n-1} \sin \left(\frac{2 n-1}{2} \pi\right)-0-0\right) \\
& =\frac{1}{\pi}\left(\frac{2}{2 n+1}(-1)^{n}+\frac{2}{2 n-1}(-1)^{n+1}\right)=\frac{(-1)^{n}}{\pi}\left(\frac{2}{2 n+1}-\frac{2}{2 n-1}\right) \\
& =\frac{(-1)^{n}}{\pi}\left(\frac{-4}{4 n^{2}-1}\right)=\frac{(-1)^{n}}{\pi}\left(\frac{4}{1-4 n^{2}}\right) .
\end{aligned}
$$

Thus, the Fourier series to $f(x)$ is

$$
\frac{2}{\pi}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\pi} \frac{4}{1-4 n^{2}} \cos (n x)
$$

Finally to find the value of the series, we evaluate the Fourier series of $f(x)$ at $x=0$, and by the Fourier Theorem and since $f(x)$ is continuous at $x=0$ we have that

$$
1=\cos \left(\frac{0}{2}\right)=f(0)=\frac{2}{\pi}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\pi} \frac{4}{1-4 n^{2}} \cos (0)=\frac{2}{\pi}+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1-4 n^{2}},
$$

whence

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1-4 n^{2}}=\frac{\pi}{4}\left(1-\frac{2}{\pi}\right)=\frac{\pi-2}{4} .
$$

## Problem 2

Find all the non-trivial solutions of the heat equation

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}} \quad \text { where } \quad 0 \leq x \leq 2 \pi \quad \text { and } \quad t \geq 0
$$

that are of the form $u(x, t)=F(x) \cdot G(t)$, and that satisfy the boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad \frac{\partial u}{\partial x}(2 \pi, t)=0 \quad \text { for every } t \geq 0
$$

Use this to find a solution satisfying the initial condition

$$
u(x, 0)=\cos (x) \sin \left(\frac{x}{4}\right) \quad \text { for every } 0 \leq x \leq 2 \pi
$$

## Possible Solution

If $u(x, t)=F(x) G(t)$ we have that

$$
u_{x x}=F^{\prime \prime} G \quad \text { and } \quad u_{t}=F G^{\prime}
$$

Then if we replace this into the heat equation we have that $F G^{\prime}=2 F^{\prime \prime} G$, so it follows that

$$
\frac{F^{\prime \prime}}{F}=\frac{G^{\prime}}{2 G}=K \quad \text { where } K \in \mathbb{R}
$$

From this we deduce the two following ODEs

$$
F^{\prime \prime}-K F=0 \quad \text { and } \quad G^{\prime}-2 K G=0 .
$$

Additionally, observe that from the boundary conditions it follows that

$$
u(0, t)=F(0) G(t)=0 \quad \text { implies } \quad F(0)=0,
$$

$$
u_{x}(2 \pi, t)=F^{\prime}(2 \pi) G(t)=0 \quad \text { implies } \quad F^{\prime}(2 \pi)=0
$$

First we solve the ODE $F^{\prime \prime}-K F=0$.
Suppose that $\underline{K}=0$, then $F^{\prime \prime}=0$, from where we have that $F(x)=$ $A x+B$. But

$$
0=F(0)=A \cdot 0+B=B \quad \text { and } \quad 0=F^{\prime}(2 \pi)=A,
$$

thus $F=0$. This gives us a trivial solution.
Now suppose that $K>0$. Then the solution of $F^{\prime \prime}-K F=0$ is of the form $F(x)=A \cosh (\sqrt{K} x)+B \sinh (\sqrt{K} x)$. But
$0=F(0)=A \cosh (0)+B \sinh (0)=A \quad$ and $\quad 0=F^{\prime}(2 \pi)=B \sqrt{K} \cosh (0)=B \sqrt{K}=0$, thus $F=0$. This gives us also a trivial solution.

Finally suppose that $\underline{K<0}$. We write $K=-p^{2}$ where $p>0$. Then the ODE $F^{\prime \prime}+p^{2} F=0$ has solution $F(x)=A \cos (p x)+B \sin (p x)$. But

$$
0=F(0)=A \cos 0+B \sin 0=A \quad \text { and } \quad 0=F^{\prime}(2 \pi)=B p \cos (p 2 \pi)
$$

But this means that $p 2 \pi=\frac{2 n+1}{2} \pi$ for $n \in \mathbb{Z}$, from where it follows that

$$
p=\frac{2 n+1}{4} \quad \text { with } n \in \mathbb{Z} .
$$

Then we define the functions

$$
F_{n}(x)=\sin \left(\frac{2 n+1}{4} x\right) \quad \text { for } n \in \mathbb{Z}
$$

Observe that since sin is an odd function for every $n \in \mathbb{N}$ we have that

$$
F_{-n}(x)=\sin \left(\frac{-2 n+1}{4} x\right)=-\sin \left(\frac{2 n-1}{4} x\right)=-F_{n-1}(x) .
$$

So the negative $n$ 's do not give us any new solutions. Then it is enough to use the functions

$$
F_{n}(x)=\sin \left(\frac{2 n+1}{4} x\right) \quad \text { for } n=0,1,2, \ldots
$$

Now we are going to solve the ODE $G^{\prime}-2 K G=0$, but since $K=-p^{2}=$ $-\left(\frac{2 n+1}{4}\right)^{2}$ for $n=0,1,2, \ldots$, we can write the ODE

$$
G^{\prime}+2\left(\frac{2 n+1}{4}\right)^{2} G=0
$$

that has solution $G_{n}(t)=e^{-2\left(\frac{2 n+1}{4}\right)^{2} t}$ for $n=0,1,2, \ldots$.
Then our desired solutions are

$$
u_{n}(x, t)=F_{n}(x) G_{n}(t)=\sin \left(\frac{2 n+1}{4} x\right) e^{-2\left(\frac{2 n+1}{4}\right)^{2} t} \quad \text { for } n=0,1,2, \ldots
$$

Now we want to find a linear combination $u(x, t)=\sum_{n=0}^{\infty} B_{n} u_{n}(x, t)$ such that

$$
\begin{aligned}
u(x, 0) & =\sum_{n=0}^{\infty} B_{n} u_{n}(x, 0)=\sum_{n=0}^{\infty} B_{n} F_{n}(x) G_{n}(0) \\
& =\sum_{n=0}^{\infty} B_{n} \sin \left(\frac{2 n+1}{4} x\right)=\cos (x) \sin \left(\frac{x}{4}\right) .
\end{aligned}
$$

But $\cos (x) \sin \left(\frac{x}{4}\right)=-\frac{1}{2} \sin \left(\frac{3}{4} x\right)+\frac{1}{2} \sin \left(\frac{5}{4} x\right)$, so it follows that $B_{1}=-\frac{1}{2}$ and $B_{2}=\frac{1}{2}$ and the rest of $B_{n}$ 's are zero. Therefore our desired solution is

$$
u(x, t)=-\frac{1}{2} \sin \left(\frac{3}{4} x\right) e^{-2\left(\frac{3}{4}\right)^{2} t}+\frac{1}{2} \sin \left(\frac{5}{4} x\right) e^{-2\left(\frac{5}{4}\right)^{2} t}
$$

## Problem 3

Show the Fourier transform $\mathcal{F}\left(x \cdot e^{-|x|}\right)=-\frac{2 \sqrt{2} i}{\sqrt{\pi}} \frac{w}{\left(1+w^{2}\right)^{2}}$. Use this to compute

$$
\int_{-\infty}^{\infty} \frac{w \sin w}{\left(1+w^{2}\right)^{2}} d w
$$

## Possible Solution

We have that

$$
\begin{aligned}
\mathcal{F}\left(x e^{-|x|}\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{-|x|} e^{-i w x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} x e^{x} e^{-i w x} d x+\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-x} e^{-i w x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} x e^{(1-i w) x} d x+\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{(-1-i w) x} d x \\
& =\frac{1}{\sqrt{2 \pi}}\left(\frac{x e^{(1-i w) x}}{(1-i w)}-\frac{e^{(1-i w) x}}{(1-i w)^{2}}\right]_{x=-\infty}^{x=0}+\frac{1}{\sqrt{2 \pi}}\left(\frac{x e^{(-1-i w) x}}{(-1-i w)}-\frac{e^{(-1-i w) x}}{(-1-i w)^{2}}\right]_{x=0}^{x=\infty} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{-1}{(1-i w)^{2}}+\frac{1}{\sqrt{2 \pi}} \frac{1}{(1+i w)^{2}}=\frac{1}{\sqrt{2 \pi}} \frac{-(1+i w)^{2}+(1-i w)^{2}}{(1+i w)^{2}(1-i w)^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{-4 i w}{((1+i w)(1-i w))^{2}}=-\frac{2 \sqrt{2} i}{\sqrt{\pi}} \frac{w}{\left(1+w^{2}\right)^{2}},
\end{aligned}
$$

as desired.
For the last part, we use the inverse of the Fourier transform, that is,

$$
x e^{-|x|}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}-\frac{2 \sqrt{2} i}{\sqrt{\pi}} \frac{w}{\left(1+w^{2}\right)^{2}} e^{i w x} d w=-\frac{2}{\pi} \int_{-\infty}^{\infty} i \frac{w}{\left(1+w^{2}\right)^{2}} e^{i w x} d w
$$

Now if we set $x=1$ we have that

$$
\begin{aligned}
e^{-1} & =-\frac{2}{\pi} \int_{-\infty}^{\infty} i \frac{w}{\left(1+w^{2}\right)^{2}} e^{i w} d w=-\frac{2}{\pi} \int_{-\infty}^{\infty} i \frac{w}{\left(1+w^{2}\right)^{2}}(\cos w+i \sin w) d w \\
& =-i \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{w}{\left(1+w^{2}\right)^{2}} \cos w d w+\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{w}{\left(1+w^{2}\right)^{2}} \sin w d w
\end{aligned}
$$

But then observe that $\int_{-\infty}^{\infty} \frac{w}{\left(1+w^{2}\right)^{2}} \cos w d w=0$ because $\frac{w}{\left(1+w^{2}\right)^{2}} \cos w$ is an odd function, so it follows that

$$
e^{-1}=\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{w}{\left(1+w^{2}\right)^{2}} \sin w d w
$$

whence

$$
\frac{\pi}{2 e}=\int_{-\infty}^{\infty} \frac{w}{\left(1+w^{2}\right)^{2}} \sin w d w
$$

## Problem 4

Perfom 3 iterations of the Newton method to find the root of the function $f(x)=x-e^{-x}$ with $x_{0}=0$. (Use only 4 decimals in your computations).

## Possible Solution

Observe that $f^{\prime}(x)=1+e^{-x}$, then Newtons metode is the iteration given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}-e^{-x_{n}}}{1+e^{-x_{n}}}=\frac{x_{n} e^{-x_{n}}+e^{-x_{n}}}{1+e^{-x_{n}}} .
$$

Then we have that

$$
x_{0}=0, \quad x_{1}=0.5, \quad x_{2}=0.5663, \quad x_{3}=0.5671 .
$$

## Problem 5

Use the Laplace transform to solve the differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=2 e^{3 t}
$$

with initial conditions

$$
y(0)=0 \quad \text { and } \quad y^{\prime}(0)=4 .
$$

## Possible Solution

We use the Laplace transform in the ODE, and denoting $Y$ the Laplace transform of $y$, we have that

$$
s^{2} Y-s y(0)-y^{\prime}(0)-3(s Y-y(0))+2 Y=\frac{2}{s-3},
$$

so we have that

$$
s^{2} Y-4-3 s Y+2 Y=\frac{2}{s-3},
$$

and

$$
Y\left(s^{2}-3 s+2\right)=\frac{2}{s-3}+4=\frac{4 s-10}{s-3},
$$

and
$Y=\frac{4 s-10}{(s-3)\left(s^{2}-3 s+2\right)}=\frac{4 s-10}{(s-3)(s-2)(s-1)}=\frac{1}{s-3}+\frac{2}{s-2}-\frac{3}{s-1}$.
So then applying the inverse of the Laplace transform we get

$$
y(t)=e^{3 t}+2 e^{2 t}-3 e^{t} .
$$

## Problem 6

Find the polynomial of smallest degree that interpolates the points of the function $f(x)$

$$
\begin{array}{c||c|c|c|c|c}
x_{i} & -2 & -1 & 0 & 1 & 2 \\
\hline f\left(x_{i}\right) & 1 & 2 & 5 & 4 & 1
\end{array}
$$

Use this polynomial to estimate $f(3)$.

## Possible Solution

Using Newton interpolation ${ }^{1}$, we obtain

| -2 | 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| -1 | 1 |  |  |  |  |
| 0 |  | 1 |  |  |  |
| 0 | 3 |  | -1 |  |  |
| 1 |  | -1 |  | $1 / 3$ | $1 / 3$ |
| 1 | 4 |  | -1 |  |  |
| 2 |  | -3 |  |  |  |
| 2 |  |  |  |  |  |

[^0]Then the polynomial is of the form

$$
p(x)=\frac{1}{3}(x-1) x(x+1)(x+2)-x(x+1)(x+2)+(x+1)(x+2)+(x+2)+1
$$

Then the estimate of $f(3)$ can be done with $p(3)=6$.

## Problem 7

We want to numerically evaluate the integral

$$
\int_{0}^{1} f(x) d x \quad \text { where } \quad f(x)=\sin \left(x^{2}\right)
$$

with the Simpson method such that the approximation error is smaller than 0.001. What is the largest value of the step size $h$ that this accuracy is guaranteed? Use this $h$ to compute a numerical approximation of the above integral by the Simpson method. (Use only 4 decimals in your computations).
(Hint: You can use that $\max _{0 \leq x \leq 1}\left|f^{(4)}(x)\right| \leq 30$ ).

## Possible Solution

We use the error estimation for the Simpsons methode, that says that

$$
|\epsilon| \leq h^{4} \frac{b-a}{180} \max _{a \leq x \leq b}\left|f^{(4)}(x)\right| \leq h^{4} \cdot \frac{1-0}{180} \cdot 30=\frac{h^{4}}{60} .
$$

Since we want that $|\epsilon|<0.001$ we may choose $h$ such that $\frac{h^{4}}{6}<0.001$, so $h<0.2783$. Then if we want to use Simpsons method with this accuracy we need to pick $n$ such that $\frac{1}{n}<0.2783$. So observe that with $n=4$, we have that $1 / 4=0.25<0.2783$. Then we compute
$S_{4}=\frac{0.25}{3}\left(\sin (0)+4 \sin \left((0.25)^{2}\right)+2 \sin \left((0.5)^{2}\right)+4 \sin \left((0.75)^{2}\right)+\sin \left((1)^{2}\right)\right)=0.3099$

## Problem 8

Let $y(x)$ be the function that solves the ODE

$$
y^{\prime}=\frac{-x}{y} \quad \text { and } \quad y(0)=1
$$

Use the Euler method with $h=0.1$ to approximate the values of $y(x)$ at the points

$$
x_{1}=0.1, \quad x_{2}=0.2 \quad \text { and } \quad x_{3}=0.3 .
$$

(Use only 4 decimals in your computations)

## Possible Solution

We have the ODE $y^{\prime}=f(x, y)=\frac{-x}{y}$. Then the Euler method iteration says

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) .
$$

Then if we start with $x_{0}=0$ and $y_{0}=1$ and with $h=0.1$, we have that

$$
y_{1}=1, \quad y_{2}=0.99, \quad y_{3}=0.9698
$$

## Problem 9

Write the linear system

$$
\begin{aligned}
10 x+y-z & =18 \\
-x+y+20 z & =17 \\
x+15 y+z & =-12
\end{aligned}
$$

in such a form that you can apply the Gauss-Seidel method and it converges. Then perform 3 iterations with starting values $x_{0}=y_{0}=z_{0}=0$. (Use only 4 decimals in your computations).

## Possible Solution

First we can rearrange the linear system in the following way

$$
\begin{aligned}
x+\frac{1}{10} y-\frac{1}{10} z & =\frac{18}{10} \\
\frac{1}{15} x+y+\frac{1}{15} z & =-\frac{12}{15} \\
-\frac{1}{20} x+\frac{1}{20} y+z & =\frac{17}{20}
\end{aligned}
$$

Then we can apply Gauss-Seidel to
$A=\left(\begin{array}{ccc}1 & \frac{1}{10} & -\frac{1}{10} \\ \frac{1}{15} & 1 & \frac{1}{15} \\ -\frac{1}{20} & \frac{1}{20} & 1\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ \frac{1}{15} & 0 & 0 \\ -\frac{1}{20} & \frac{1}{20} & 0\end{array}\right)+\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+\left(\begin{array}{ccc}0 & \frac{1}{10} & -\frac{1}{10} \\ 0 & 0 & \frac{1}{15} \\ 0 & 0 & 0\end{array}\right)=L+I+U$
Observe that the method will converge because $A$ is diagonal dominant.

We have then the following iteration equations

$$
\begin{aligned}
x^{(n+1)} & =\frac{18}{10}+\frac{1}{10} y^{(n)}-\frac{1}{10} z^{(n)} \\
y^{(n+1)} & =-\frac{12}{15}+\frac{1}{15} x^{(n+1)}+\frac{1}{15} z^{(n)} \\
z^{(n+1)} & =\frac{17}{20}-\frac{1}{20} x^{(n+1)} \frac{1}{20} y^{(n+1)}
\end{aligned}
$$

Then if $\left(x^{(0)}, y^{(0)}, z^{(0)}\right)=(0,0,0)$ we have that

$$
\begin{gathered}
\left(x^{(1)}, y^{(1)}, z^{(1)}\right)=(1.8,-0.92,0.986) \\
\left(x^{(2)}, y^{(2)}, z^{(2)}\right)=(1.9906,-0.9984,0.9995) \\
\left(x^{(3)}, y^{(3)}, z^{(3)}\right)=(2,-1,1) .
\end{gathered}
$$

## Problem 10

Let $\mathcal{R}$ be the region defined by the lines

$$
L_{1}: y=4-x \quad L_{2}: y=0 \quad L_{3}: x=0
$$

Let $u(x, y)$ be the function defined in $\mathcal{R}$ that satisfies the Poisson equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2 x y
$$

and boundary conditions

$$
\begin{array}{ll}
u(x, y)=4 & \text { if }(x, y) \in L_{1} \\
u(x, y)=x & \text { if }(x, y) \in L_{2} \\
u(x, y)=y & \text { if }(x, y) \in L_{3}
\end{array}
$$



Let us define the points $\left(x_{i}, y_{j}\right)=(i \cdot h, j \cdot h)$ with $h=1$. Use the method of difference equations with $h=1$ in order to set up a linear system for finding approximations of the values $u(1,1), u(1,2)$ and $u(2,1)$.

## Possible Solution

If we define $u_{i, j}:=u(i h, j h)$, the difference method gives us the following equation

$$
\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}\right)=2(i h \cdot j h)
$$

So if $h=1$ we have the following equations

$$
\begin{aligned}
& u_{2,1}+u_{0,1}+u_{1,2}+u_{1,0}-4 u_{1,1}=2(1 \cdot 1)=2 \\
& u_{3,1}+u_{1,1}+u_{2,2}+u_{2,0}-4 u_{2,1}=2(2 \cdot 1)=4 \\
& u_{2,2}+u_{0,2}+u_{1,3}+u_{1,1}-4 u_{1,2}=2(1 \cdot 2)=4
\end{aligned}
$$

and using the boundary conditions

$$
\begin{gathered}
u_{2,1}+1+u_{1,2}+1-4 u_{1,1}=2 \\
4+u_{1,1}+4+2-4 u_{2,1}=4 \\
4+2+4+u_{1,1}-4 u_{1,2}=4
\end{gathered}
$$

Hence the the desired linear system is

$$
\begin{gathered}
u_{2,1}+u_{1,2}-4 u_{1,1}=0 \\
u_{1,1}-4 u_{2,1}=-6 \\
u_{1,1}-4 u_{1,2}=-6
\end{gathered}
$$


[^0]:    ${ }^{1}$ Lagrange interpolation would be fine as well

