Problem 1 (TMA4125/TMA4130)

Use the Laplace transformation for solving the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t u(t-1)
$$

with the initial conditions

$$
y(0)=1, \quad y^{\prime}(0)=-1 .
$$

Possible Solution

Application of the Laplace-transform to the equation gives us

$$
s^{2} Y-s y(0)-y^{\prime}(0)+3 s Y-3 y(0)+2 Y=\mathcal{L}(t u(t-1)) .
$$

The right hand side computes to

$$
\begin{aligned}
\mathcal{L}(t u(t-1))=\mathcal{L}(((t-1)+1) u(t-1))= & e^{-s} \mathcal{L}(t+1) \\
& =e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)=e^{-s} \frac{s+1}{s^{2}} .
\end{aligned}
$$

Inserting this and the initial conditions into the transformed equation, we obtain

$$
s^{2} Y-s+1+3 s Y-3+Y=e^{-s} \frac{s+1}{s^{2}}
$$

Noting that

$$
\left(s^{2}+3 s+1\right)=(s+2)(s+1)
$$

we obtain that

$$
(s+2)(s+1) Y=s+2+e^{-s} \frac{s+1}{s^{2}}
$$

and thus

$$
Y=\frac{1}{s+1}+e^{-s} \frac{1}{s^{2}(s+2)} .
$$

Now
$\frac{1}{s^{2}(s+2)}=\frac{1}{2} \frac{s+2-s}{s^{2}(s+2)}=\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{2} \frac{1}{s(s+2)}=\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{4} \frac{s+2-s}{s(s+2)}=\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{4} \frac{1}{s}+\frac{1}{4} \frac{1}{s+2}$.
Thus

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left(\frac{1}{s+1}+e^{-s}\left(\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{4} \frac{1}{s}+\frac{1}{4} \frac{1}{s+2}\right)\right) \\
& =e^{-t}+\frac{1}{4} u(t-1)\left(2(t-1)-1+e^{-(t-2)}\right) \\
& =e^{-t}+\frac{1}{4} u(t-1)\left(2 t-3+e^{2-t}\right) .
\end{aligned}
$$

Problem 1 (TMA4122)

Let f be the function

$$
f(x)=\frac{1}{1+x^{2}} \quad \text { for } x \in \mathbb{R}
$$

Use the Fourier transformation for computing the convolution $(f * f)(x)$.

Possible Solution

We have

$$
\mathcal{F}(f * f)(\omega)=\sqrt{2 \pi}(\mathcal{F}(f)(\omega))^{2}=\sqrt{2 \pi}\left(\sqrt{\frac{\pi}{2}} e^{-|\omega|}\right)^{2}=\sqrt{\frac{\pi^{3}}{2}} e^{-2|\omega|} .
$$

Now we note that

$$
\mathcal{F}^{-1}\left(e^{-2|\omega|}\right)(x)=\sqrt{\frac{2}{\pi}} \frac{2}{4+x^{2}},
$$

and therefore

$$
f * f(x)=\sqrt{\frac{\pi^{3}}{2}} \mathcal{F}^{-1}\left(e^{-2|\omega|}\right)(x)=\frac{2 \pi}{4+x^{2}} .
$$

Problem 1 (TMA4123)

Consider the Matlab script

```
function x = TMA4123(N)
x = 0;
for i=1:N
x = x - (exp (x)-x^2)/(exp (x)-2*x );
end
```

Compute the return value of the script for $N=2$ and explain why this is an approximation to the solution of the equation

$$
e^{x}=x^{2} .
$$

Possible Solution

Newton's method for the solution of the equation $e^{x}-x^{2}=0$ reads

$$
x_{n+1}=x_{n}-\frac{e^{x_{n}}-x_{n}^{2}}{e^{x_{n}}-2 x_{n}},
$$

which is exactly the formula that defines the updates in the for-loop. Thus the Matlab script is nothing else than an implementation of Newton's method for the solution of the given equation with starting value $x=0$ and N iterations.

With $N=2$ we obtain in the first step a value of

$$
x=0-\frac{e^{0}-0^{2}}{e^{0}-2 \cdot 0}=-1,
$$

and in the second step

$$
x=-1-\frac{e^{-1}-(-1)^{2}}{e^{-1}-2 \cdot(-1)} \approx-0.7330436
$$

This is also the return value of the script.

Problem 2

Find the polynomial of lowest degree that interpolates the points

$$
\begin{array}{c||c|c|c|c|c}
x_{i} & -2 & -1 & 0 & 1 & 2 \\
\hline f\left(x_{i}\right) & 2 & 4 & 0 & -4 & 4
\end{array}
$$

Possible Solution

Using Newton interpolation ${ }^{1}$, we obtain

-2	2				
-1	4	2			
	4	-3			
0	-4		1		
1		-4	0		$1 / 4$
1	-4		6		
2	4	8			
2					

Thus the interpolation polynomial in Newton form reads

$$
\begin{aligned}
p(x) & =2+2(x+2)-3(x+2)(x+1)+(x+2)(x+1) x+\frac{1}{4}(x+2)(x+1) x(x-1) \\
& =2+2(x+2)-3\left(x^{2}+3 x+2\right)+x^{3}+3 x^{2}+2 x+\frac{1}{4}\left(x^{4}+2 x^{3}-x^{2}-2 x\right) \\
& =\frac{1}{4} x^{4}+\frac{3}{2} x^{3}-\frac{1}{4} x^{2}-\frac{11}{2} x .
\end{aligned}
$$

[^0]
Problem 3

Use the trapezoidal rule with step length $h=0.25$ in order to find an approximation T of the integral

$$
I=\int_{0}^{1} e^{x^{2}} d x
$$

Find an upper bound for the error $|I-T|$.

Possible Solution

The trapezoidal rule with $h=0.25$ for this integral reads

$$
T=\frac{1}{4}\left(\frac{1}{2} e^{0}+e^{0.25^{2}}+e^{0.5^{2}}+e^{0.75^{2}}+\frac{1}{2} e^{1}\right) \approx 1.490679 .
$$

For the error estimate we use the formula

$$
|\epsilon| \leq \frac{1}{12} 0.25^{2} \max _{0 \leq x \leq 1}\left|\left(e^{x^{2}}\right)^{\prime \prime}\right| .
$$

Now

$$
\left(e^{x^{2}}\right)^{\prime}=2 x e^{x^{2}}
$$

and thus

$$
\left(e^{x^{2}}\right)^{\prime \prime}=\left(2 x e^{x^{2}}\right)^{\prime}=\left(4 x^{2}+2\right) e^{x^{2}} .
$$

Since both the functions $4 x^{2}+2$ and $e^{x^{2}}$ are positive and increasing on the interval $[0,1]$, the maximum is attained for the largest value of x, that is, for $x=1$. Thus

$$
\max _{0 \leq x \leq 1}\left|\left(e^{x^{2}}\right)^{\prime \prime}\right|=6 e
$$

and we obtain the error estimate

$$
|\epsilon| \leq \frac{1}{12} 0.25^{2} 6 e=\frac{e}{32} \approx 0.08494631 .
$$

Problem 4

Perform two iterations of the Jacobi method for solving the linear system

$$
\begin{aligned}
5 x_{1}+2 x_{2}+x_{3} & =5, \\
-x_{1}-5 x_{2}+x_{3} & =5, \\
x_{1}+x_{2}+3 x_{3} & =-3 .
\end{aligned}
$$

Use the initial value $x^{(0)}=(0,0,0)$.

Possible Solution

The Jacobi method for this system reads

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{5}\left(5-2 x_{2}^{k}-x_{3}^{k}\right), \\
x_{2}^{(k+1)} & =-\frac{1}{5}\left(5+x_{1}^{k}-x_{3}^{k}\right), \\
x_{3}^{(k+1)} & =\frac{1}{3}\left(-3-x_{1}^{k}-x_{2}^{k}\right) .
\end{aligned}
$$

In the first iteration we obtain

$$
\begin{aligned}
& x_{1}^{(1)}=\frac{1}{5}(5-2 \cdot 0-0)=1, \\
& x_{2}^{(1)}=-\frac{1}{5}(5+0-0)=-1, \\
& x_{3}^{(1)}=\frac{1}{3}(-3-0-0)=-1 .
\end{aligned}
$$

In the second iteration, we obtain

$$
\begin{aligned}
& x_{1}^{(2)}=\frac{1}{5}(5-2 \cdot(-1)-(-1))=\frac{8}{5}, \\
& x_{2}^{(2)}=-\frac{1}{5}(5+1-(-1))=-\frac{7}{5}, \\
& x_{3}^{(2)}=\frac{1}{3}(-3-1-(-1))=-1 .
\end{aligned}
$$

Problem 5

Let f be the 6 -periodic function defined by

$$
f(x)=x+3 \quad \text { for }-3<x<3
$$

Find the Fourier series of f.

Possible Solution

The Fourier coefficient a_{0} computes as

$$
a_{0}=\frac{1}{6} \int_{-3}^{3} x+3 d x=3 .
$$

If $n \geq 1$, we obtain

$$
a_{n}=\frac{1}{3} \int_{-3}^{3}(x+3) \cos \frac{n \pi x}{3} d x \text {. }
$$

Now note that the function x is odd, while cos is even, which implies that $x \cos \frac{n \pi x}{3}$ is odd, and thus its integral from -3 to 3 equal to 0 . Thus

$$
a_{n}=\frac{1}{3} \int_{-3}^{3} 3 \cos \frac{n \pi x}{3} d x=\left.\frac{3}{n \pi} \sin \frac{n \pi x}{3}\right|_{-3} ^{3}=0
$$

For the computation of the coefficients b_{n} we obtain

$$
b_{n}=\frac{1}{3} \int_{-3}^{3}(x+3) \sin \frac{n \pi x}{3} d x
$$

which reduces, because sin is odd, to

$$
b_{n}=\frac{1}{3} \int_{-3}^{3} x \sin \frac{n \pi x}{3} d x
$$

Integration by parts yields

$$
\begin{aligned}
b_{n} & =-\left.\frac{1}{3} x \frac{3}{n \pi} \cos \frac{n \pi x}{3}\right|_{-3} ^{3}-\frac{1}{3} \int_{-3}^{3}\left(-\frac{3}{n \pi} \cos \frac{n \pi x}{3}\right) d x \\
& =-\frac{1}{n \pi}\left(3(-1)^{n}-(-3)(-1)^{n}\right)+\left.\frac{1}{n \pi} \frac{3}{n \pi} \sin \frac{n \pi x}{3}\right|_{-3} ^{3} \\
& =\frac{6(-1)^{n+1}}{n \pi}
\end{aligned}
$$

Thus we obtain the Fourier series expansion

$$
f(x)=3+\sum_{n=1}^{\infty} \frac{6(-1)^{n+1}}{n \pi} \sin \frac{n \pi x}{3} .
$$

Problem 6

Let f be the 2π-periodic function given by

$$
f(x)= \begin{cases}e^{x} & \text { for } 0<x<\pi \\ 0 & \text { for }-\pi<x<0\end{cases}
$$

Assume that a_{n} and b_{n} are the Fourier coefficients of f, and denote by g and h the functions

$$
g(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x) \quad \text { and } \quad h(x)=\sum_{n=1}^{\infty} b_{n} \sin (n x) .
$$

Sketch the graphs of the functions f, g, and h on the interval $[-2 \pi, 2 \pi]$, and find the values of $f(x)$ and $g(x)$ in the points $x=-\pi / 2, x=0$, and $x=\pi / 2$.

Possible Solution

Since the function g contains only a constant and cosine terms, it is even, that is $g(x)=g(-x)$. Also, the function h only contains sine terms and therefore is odd, that is, $h(-x)=-h(x)$. Finally, we note that

$$
g(x)+h(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)=f(x)
$$

(at all points x where f is continuous), as a_{n} and b_{n} are the Fourier coefficients of f. In other words,

$$
\begin{array}{ll}
g(x)+h(x)=e^{x} & \text { for all } 0<x<\pi, \\
g(x)+h(x)=0 & \text { for all }-\pi<x<0 .
\end{array}
$$

Now the second equation can also be written as

$$
g(-x)+h(-x)=0 \quad \text { for all } 0<x<\pi .
$$

Using the fact that $g(-x)=g(x)$ and $h(-x)=-h(x)$, we thus obtain the system of equations

$$
\begin{array}{ll}
g(x)+h(x)=e^{x} & \text { for all } 0<x<\pi, \\
g(x)-h(x)=0 & \text { for all } 0<x<\pi .
\end{array}
$$

Solving this system for $g(x)$ and $h(x)$ yields

$$
g(x)=h(x)=\frac{1}{2} e^{x} \quad \text { for all } 0<x<\pi .
$$

Since g is even and h is odd, this means that

$$
g(x)= \begin{cases}\frac{1}{2} e^{x} & \text { for } 0<x<\pi \\ \frac{1}{2} e^{-x} & \text { for }-\pi<x<0\end{cases}
$$

and

$$
h(x)= \begin{cases}\frac{1}{2} e^{x} & \text { for } 0<x<\pi, \\ -\frac{1}{2} e^{-x} & \text { for }-\pi<x<0 .\end{cases}
$$

In particular, we obtain

$$
g(-\pi / 2)=g(\pi / 2)=\frac{1}{2} e^{\pi / 2}
$$

and

$$
h(-\pi / 2)=-\frac{1}{2} e^{\pi / 2} \quad \text { and } \quad h(\pi / 2)=\frac{1}{2} e^{\pi / 2} .
$$

At the point 0 , the functions g and h are equal to the means of their left-hand and right-hand limits, respectively. Therefore

$$
g(0)=\frac{1}{2}(g(0-0)+g(0+0))=\frac{1}{2}\left(e^{-0}+e^{0}\right)=1
$$

and

$$
h(x)=\frac{1}{2}(h(0-0)+h(0+0))=\frac{1}{2}\left(-e^{-0}+e^{0}\right)=0 .
$$

Problem 7

We want to find a numerical solution of the partial differential equation

$$
\frac{\partial u}{\partial t}(x, t)=t u(x, t)+\frac{\partial^{2} u}{\partial x^{2}}(x, t), \quad 0 \leq x \leq 1, \quad t>0
$$

with boundary conditions

$$
u(0, t)=0, \quad u(1, t)=1 \quad \text { for all } t>0
$$

and initial condition

$$
u(x, 0)=x \quad \text { for } 0 \leq x \leq 1
$$

Formulate an explicit method for solving this partial differential equation with the given boundary and initial conditions.

Use a step length of $h=1 / 4$ in space and perform two time steps of length $k=1 / 10$.

Possible Solution

Denote $x_{i}:=i h$ and $t_{j}:=j k$, and let $u_{i, j}$ be a numerical approximation of $u\left(x_{i}, t_{j}\right)$.

The left hand side of the PDE can be discretised (in order to obtain an explicit method) as

$$
\frac{\partial u}{\partial t}\left(x_{i}, t_{j}\right) \approx \frac{u_{i, j+1}-u_{i, j}}{k},
$$

and the right hand side as

$$
t_{j} u\left(x_{i}, t_{j}\right)+\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, t_{j}\right) \approx j k u_{i, j}+\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}} .
$$

Thus one obtains

$$
\frac{u_{i, j+1}-u_{i, j}}{k}=j k u_{i, j}+\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}}
$$

or, explicitly,

$$
u_{i, j+1}=u_{i, j}+k\left(j k u_{i, j}+\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}}\right) .
$$

With $h=1 / 4$ and $k=1 / 10$, this becomes

$$
u_{i, j+1}=u_{i, j}+\frac{j}{100} u_{i, j}+\frac{8}{5}\left(u_{i-1, j}-2 u_{i, j}+u_{i+1, j}\right) .
$$

Now we use the initial condition $u(x, 0)=x$ in order to obtain that

$$
\begin{aligned}
& u_{0,0}=0, \\
& u_{1,0}=\frac{1}{4}, \\
& u_{2,0}=\frac{1}{2}, \\
& u_{3,0}=\frac{3}{4}, \\
& u_{4,0}=1 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& u_{1,1}=u_{1,0}+0+\frac{8}{5}\left(u_{0,0}-2 u_{1,0}+u_{2,0}\right)=\frac{1}{4}, \\
& u_{2,1}=u_{2,0}+0+\frac{8}{5}\left(u_{1,0}-2 u_{2,0}+u_{3,0}\right)=\frac{1}{2}, \\
& u_{3,1}=u_{3,0}+0+\frac{8}{5}\left(u_{2,0}-2 u_{3,0}+u_{4,0}\right)=\frac{3}{4} .
\end{aligned}
$$

For the next iteration, we use the boundary conditions

$$
u_{0,1}=0 \quad \text { and } \quad u_{4,1}=1,
$$

and obtain

$$
\begin{aligned}
& u_{1,2}=u_{1,1}+\frac{1}{100} u_{1,1}+\frac{8}{5}\left(u_{0,1}-2 u_{1,1}+u_{2,1}\right)=\frac{101}{400}=0.2525, \\
& u_{2,2}=u_{2,1}+\frac{1}{100} u_{2,1}+\frac{8}{5}\left(u_{1,1}-2 u_{2,1}+u_{3,1}\right)=\frac{101}{200}=0.505, \\
& u_{3,2}=u_{3,1}+\frac{1}{100} u_{3,1}+\frac{8}{5}\left(u_{2,1}-2 u_{3,1}+u_{4,1}\right)=\frac{303}{400}=0.7575 .
\end{aligned}
$$

Problem 8

Use the Fourier transformation for solving the partial differential equation

$$
\frac{\partial u}{\partial t}(x, t)=t \frac{\partial^{2} u}{\partial x^{2}}(x, t), \quad x \in \mathbb{R}, \quad t>0
$$

with initial condition

$$
u(x, 0)=e^{-\frac{x^{2}}{2}}, \quad x \in \mathbb{R} .
$$

Possible Solution

We apply the Fourier transformation (with respect only to the x-variable) to the given PDE and obtain

$$
\frac{\partial \hat{u}}{\partial t}(\omega, t)=-t \omega^{2} \hat{u}(\omega, t) .
$$

For every $\omega \in \mathbb{R}$, this is an ODE with respect to t, with solution

$$
\hat{u}(\omega, t)=C(\omega) e^{-\frac{\omega^{2} t^{2}}{2}} .
$$

In order to find $C(\omega)$, we use the initial condition, which, after a Fourier transformation, reads as

$$
\hat{u}(\omega, 0)=e^{-\frac{\omega^{2}}{2}}
$$

Thus

$$
C(\omega)=e^{-\frac{\omega^{2}}{2}},
$$

and we obtain

$$
\hat{u}(\omega, t)=e^{-\frac{\omega^{2}}{2}} e^{-\frac{\omega^{2} t^{2}}{2}}=e^{-\omega^{2} \frac{t^{2}+1}{2}} .
$$

Finally we compute the inverse Fourier transform of \hat{u} and obtain

$$
u(x, t)=\mathcal{F}^{-1}(\hat{u}(\omega, t))=\frac{1}{\sqrt{t^{2}+1}} e^{-\frac{x^{2}}{2\left(t^{2}+1\right)}} .
$$

Problem 9a

Given the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)+5 u(x, y)=0, \quad 0<x<\pi, \quad 0<y<\pi / 4
$$

find all solutions of the form $u(x, y)=F(x) G(y)$ that satisfy the boundary conditions

$$
u(0, y)=0 \quad \text { and } \quad u(\pi, y)=0, \quad 0<y<\pi / 4
$$

Possible Solution

Inserting the function $u(x, y)=F(x) G(y)$ into the PDE , we obtain the equation

$$
F^{\prime \prime}(x) G(y)+F(x) G^{\prime \prime}(y)+5 F(x) G(y)=0,
$$

which we rewrite as

$$
\frac{F^{\prime \prime}(x)}{F(x)}=-\frac{G^{\prime \prime}(y)}{G(y)}-5 .
$$

Now the left hand side only depends on x while the right hand side only depends on y, which implies that both sides need to be constant, say equal to k for some $k \in \mathbb{R}$. We thus obtain that

$$
\begin{aligned}
& F^{\prime \prime}(x)=k F(x), \\
& G^{\prime \prime}(y)=(5-k) G(y) .
\end{aligned}
$$

We now consider the different possibilities for k.

- $k=0$:

Here the equation for F has the solution

$$
F(x)=A x+B .
$$

The boundary condition $F(0)=0$ implies that $B=0$, and the boundary condition $F(\pi)=0$ then implies that $0=A \pi$, and thus $A=0$. Thus we only obtain the trivial solution $F(x)=0$.

- $k=p^{2}>0$:

Here the equation for F has the solution

$$
F(x)=A \sinh p x+B \cosh p x
$$

Now the boundary condition $F(0)=0$ implies that $B=0$, and the boundary condition $F(\pi)=0$ then implies that $0=A \sinh p \pi$, and therefore $A=0$. Again, we only obtain the trivial solution.

- $k=-p^{2}<0$:

Here we obtain for F the solutions

$$
F(x)=A \sin p x+B \cos p x .
$$

Again the boundary condition $F(0)=0$ implies that $B=0$. The boundary condition $F(\pi)=0$, however, then implies that either $A=0$ or $p \in \mathbb{N}$. Thus we obtain the non-trivial solution

$$
F(x)=\sin p x
$$

with $p \in \mathbb{N}$.

Now we turn to the solution of the equation

$$
G^{\prime \prime}(y)=(5-k) G(y)=\left(5+p^{2}\right) G(y),
$$

which has the solution

$$
G(y)=A \cosh \left(\sqrt{5+p^{2}} y\right)+B \sinh \left(\sqrt{5+p^{2}} y\right)
$$

In total, we therefore obtain the nontrivial solutions

$$
u(x, y)=\sin (p x)\left(A \cosh \left(\sqrt{5+p^{2}} y\right)+B \sinh \left(\sqrt{5+p^{2}} y\right)\right)
$$

for $p \in \mathbb{N}$.

Problem 9b

Find the solution of the problem in part a) that in addition satisfies the boundary conditions

$$
\begin{aligned}
u(x, 0) & =\sin (x), & & 0<x<\pi, \\
u(x, \pi / 4) & =\sin (x), & & 0<x<\pi .
\end{aligned}
$$

Possible Solution

Using the results of Problem 9a, we obtain that

$$
u(x, y)=\sum_{p=1}^{\infty} \sin (p x)\left(A_{p} \cosh \left(\sqrt{5+p^{2}} y\right)+B_{p} \sinh \left(\sqrt{5+p^{2}} y\right)\right)
$$

for some coefficients $A_{p}, B_{p} \in \mathbb{R}, p \in \mathbb{N}$.
The boundary condition $u(x, 0)=\sin (x)$ now yields that

$$
\sin x=u(x, 0)=\sum_{p=1}^{\infty} \sin (p x) A_{p}
$$

which immediately implies that

$$
A_{1}=1 \quad \text { and } A_{p}=0 \text { for } p \geq 2
$$

That is,

$$
u(x, y)=\sin (x) \cosh (\sqrt{6} y)+\sum_{p=1}^{\infty} B_{p} \sin (p x) \sinh \left(\sqrt{5+p^{2}} y\right) .
$$

Now we insert the second boundary condition $u(x, \pi / 2)=\sin (x)$ and obtain that
$\sin (x)=\sin (x) \cosh (\sqrt{6} \pi / 2)+B_{1} \sin (x) \sinh (\sqrt{6} \pi / 2)+\sum_{p=2}^{\infty} B_{p} \sin (p x) \sinh \left(\sqrt{5+p^{2}} y\right)$.
This implies that $B_{p}=0$ for $p \geq 2$ and

$$
B_{1}=-\frac{\cosh (\sqrt{6} \pi / 2)}{\sinh (\sqrt{6} \pi / 2)}
$$

Thus

$$
u(x, y)=\sin x \cosh (\sqrt{6} y)-\frac{\cosh (\sqrt{6} \pi / 2)}{\sinh (\sqrt{6} \pi / 2)} \sin x \sinh (\sqrt{6} y)
$$

[^0]: ${ }^{1}$ Lagrange interpolation would be fine as well

