
Problem 1 (TMA4125/TMA4130)
Use the Laplace transformation for solving the differential equation

y′′ + 3y′ + 2y = tu(t− 1)

with the initial conditions

y(0) = 1, y′(0) = −1.

Possible Solution
Application of the Laplace-transform to the equation gives us

s2Y − sy(0)− y′(0) + 3sY − 3y(0) + 2Y = L(tu(t− 1)).

The right hand side computes to

L(tu(t− 1)) = L
(
((t− 1) + 1)u(t− 1)

)
= e−sL(t+ 1)

= e−s
( 1
s2 + 1

s

)
= e−s

s+ 1
s2 .

Inserting this and the initial conditions into the transformed equation, we
obtain

s2Y − s+ 1 + 3sY − 3 + Y = e−s
s+ 1
s2 .

Noting that
(s2 + 3s+ 1) = (s+ 2)(s+ 1)

we obtain that
(s+ 2)(s+ 1)Y = s+ 2 + e−s

s+ 1
s2

and thus
Y = 1

s+ 1 + e−s
1

s2(s+ 2) .

Now
1

s2(s+ 2) = 1
2
s+ 2− s
s2(s+ 2) = 1

2
1
s2−

1
2

1
s(s+ 2) = 1

2
1
s2−

1
4
s+ 2− s
s(s+ 2) = 1

2
1
s2−

1
4

1
s

+1
4

1
s+ 2 .

Thus
y(t) = L−1

( 1
s+ 1 + e−s

(1
2

1
s2 −

1
4

1
s

+ 1
4

1
s+ 2

))
= e−t + 1

4u(t− 1)
(
2(t− 1)− 1 + e−(t−2)

)
= e−t + 1

4u(t− 1)
(
2t− 3 + e2−t

)
.
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Problem 1 (TMA4122)
Let f be the function

f(x) = 1
1 + x2 for x ∈ R.

Use the Fourier transformation for computing the convolution (f ∗ f)(x).

Possible Solution
We have

F(f ∗ f)(ω) =
√

2π(F(f)(ω))2 =
√

2π
(√

π

2 e
−|ω|

)2
=
√
π3

2 e
−2|ω|.

Now we note that

F−1(e−2|ω|)(x) =
√

2
π

2
4 + x2 ,

and therefore

f ∗ f(x) =
√
π3

2 F
−1(e−2|ω|)(x) = 2π

4 + x2 .

Problem 1 (TMA4123)
Consider the Matlab script

function x = TMA4123(N)
x = 0 ;
for i =1:N
x = x − (exp( x)−x^2)/(exp( x)−2∗x ) ;
end

Compute the return value of the script for N = 2 and explain why this
is an approximation to the solution of the equation

ex = x2.

Possible Solution
Newton’s method for the solution of the equation ex − x2 = 0 reads

xn+1 = xn −
exn − xn2

exn − 2xn
,
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which is exactly the formula that defines the updates in the for–loop. Thus
the Matlab script is nothing else than an implementation of Newton’s method
for the solution of the given equation with starting value x = 0 and N
iterations.

With N = 2 we obtain in the first step a value of

x = 0− e0 − 02

e0 − 2 · 0 = −1,

and in the second step

x = −1− e−1 − (−1)2

e−1 − 2 · (−1) ≈ −0.7330436.

This is also the return value of the script.

Problem 2
Find the polynomial of lowest degree that interpolates the points

xi −2 −1 0 1 2
f(xi) 2 4 0 −4 4

Possible Solution
Using Newton interpolation1, we obtain

-2 2
2

-1 4 -3
-4 1

0 0 0 1/4
-4 2

1 -4 6
8

2 4
Thus the interpolation polynomial in Newton form reads

p(x) = 2 + 2(x+ 2)− 3(x+ 2)(x+ 1) + (x+ 2)(x+ 1)x+ 1
4(x+ 2)(x+ 1)x(x− 1)

= 2 + 2(x+ 2)− 3(x2 + 3x+ 2) + x3 + 3x2 + 2x+ 1
4(x4 + 2x3 − x2 − 2x)

= 1
4x

4 + 3
2x

3 − 11
4 x

2 − 11
2 x.

1Lagrange interpolation would be fine as well
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Problem 3
Use the trapezoidal rule with step length h = 0.25 in order to find an ap-
proximation T of the integral

I =
∫ 1

0
ex

2
dx.

Find an upper bound for the error |I − T |.

Possible Solution
The trapezoidal rule with h = 0.25 for this integral reads

T = 1
4

(1
2e

0 + e0.252 + e0.52 + e0.752 + 1
2e

1
)
≈ 1.490679.

For the error estimate we use the formula

|ε| ≤ 1
120.252 max

0≤x≤1
|(ex2)′′|.

Now
(ex2)′ = 2xex2

and thus
(ex2)′′ = (2xex2)′ = (4x2 + 2)ex2

.

Since both the functions 4x2 + 2 and ex2 are positive and increasing on the
interval [0, 1], the maximum is attained for the largest value of x, that is, for
x = 1. Thus

max
0≤x≤1

|(ex2)′′| = 6e

and we obtain the error estimate

|ε| ≤ 1
120.2526e = e

32 ≈ 0.08494631.

Problem 4
Perform two iterations of the Jacobi method for solving the linear system

5x1 + 2x2 + x3 = 5,
−x1 − 5x2 + x3 = 5,
x1 + x2 + 3x3 = −3.

Use the initial value x(0) = (0, 0, 0).

4



Possible Solution
The Jacobi method for this system reads

x
(k+1)
1 = 1

5
(
5− 2xk2 − xk3

)
,

x
(k+1)
2 = −1

5
(
5 + xk1 − xk3

)
,

x
(k+1)
3 = 1

3
(
−3− xk1 − xk2

)
.

In the first iteration we obtain

x
(1)
1 = 1

5
(
5− 2 · 0− 0

)
= 1,

x
(1)
2 = −1

5
(
5 + 0− 0

)
= −1,

x
(1)
3 = 1

3
(
−3− 0− 0

)
= −1.

In the second iteration, we obtain

x
(2)
1 = 1

5
(
5− 2 · (−1)− (−1)

)
= 8

5 ,

x
(2)
2 = −1

5
(
5 + 1− (−1)

)
= −7

5 ,

x
(2)
3 = 1

3
(
−3− 1− (−1)

)
= −1.

Problem 5
Let f be the 6-periodic function defined by

f(x) = x+ 3 for − 3 < x < 3.

Find the Fourier series of f .

Possible Solution
The Fourier coefficient a0 computes as

a0 = 1
6

∫ 3

−3
x+ 3 dx = 3.

If n ≥ 1, we obtain

an = 1
3

∫ 3

−3
(x+ 3) cos nπx3 dx.
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Now note that the function x is odd, while cos is even, which implies that
x cos nπx

3 is odd, and thus its integral from −3 to 3 equal to 0. Thus

an = 1
3

∫ 3

−3
3 cos nπx3 dx = 3

nπ
sin nπx3

∣∣∣∣3
−3

= 0.

For the computation of the coefficients bn we obtain

bn = 1
3

∫ 3

−3
(x+ 3) sin nπx3 dx,

which reduces, because sin is odd, to

bn = 1
3

∫ 3

−3
x sin nπx3 dx,

Integration by parts yields

bn = −1
3x

3
nπ

cos nπx3

∣∣∣∣3
−3
− 1

3

∫ 3

−3

(
− 3
nπ

cos nπx3

)
dx

= − 1
nπ

(
3(−1)n − (−3)(−1)n

)
+ 1
nπ

3
nπ

sin nπx3

∣∣∣∣3
−3

= 6(−1)n+1

nπ

Thus we obtain the Fourier series expansion

f(x) = 3 +
∞∑
n=1

6(−1)n+1

nπ
sin nπx3 .

Problem 6
Let f be the 2π-periodic function given by

f(x) =

ex for 0 < x < π,

0 for − π < x < 0.

Assume that an and bn are the Fourier coefficients of f , and denote by g and
h the functions

g(x) = a0 +
∞∑
n=1

an cos(nx) and h(x) =
∞∑
n=1

bn sin(nx).

Sketch the graphs of the functions f , g, and h on the interval [−2π, 2π], and
find the values of f(x) and g(x) in the points x = −π/2, x = 0, and x = π/2.
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Possible Solution
Since the function g contains only a constant and cosine terms, it is even,
that is g(x) = g(−x). Also, the function h only contains sine terms and
therefore is odd, that is, h(−x) = −h(x). Finally, we note that

g(x) + h(x) = a0 +
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
= f(x)

(at all points x where f is continuous), as an and bn are the Fourier coefficients
of f . In other words,

g(x) + h(x) = ex for all 0 < x < π,

g(x) + h(x) = 0 for all − π < x < 0.

Now the second equation can also be written as

g(−x) + h(−x) = 0 for all 0 < x < π.

Using the fact that g(−x) = g(x) and h(−x) = −h(x), we thus obtain the
system of equations

g(x) + h(x) = ex for all 0 < x < π,

g(x)− h(x) = 0 for all 0 < x < π.

Solving this system for g(x) and h(x) yields

g(x) = h(x) = 1
2e

x for all 0 < x < π.

Since g is even and h is odd, this means that

g(x) =


1
2e
x for 0 < x < π,

1
2e
−x for − π < x < 0,

and

h(x) =


1
2e
x for 0 < x < π,

−1
2e
−x for − π < x < 0.

In particular, we obtain

g(−π/2) = g(π/2) = 1
2e

π/2

and
h(−π/2) = −1

2e
π/2 and h(π/2) = 1

2e
π/2.
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At the point 0, the functions g and h are equal to the means of their left-hand
and right-hand limits, respectively. Therefore

g(0) = 1
2
(
g(0− 0) + g(0 + 0)

)
= 1

2
(
e−0 + e0

)
= 1

and
h(x) = 1

2
(
h(0− 0) + h(0 + 0)

)
= 1

2
(
−e−0 + e0

)
= 0.

Problem 7
We want to find a numerical solution of the partial differential equation

∂u

∂t
(x, t) = tu(x, t) + ∂2u

∂x2 (x, t), 0 ≤ x ≤ 1, t > 0,

with boundary conditions

u(0, t) = 0, u(1, t) = 1 for all t > 0

and initial condition

u(x, 0) = x for 0 ≤ x ≤ 1.

Formulate an explicit method for solving this partial differential equation
with the given boundary and initial conditions.

Use a step length of h = 1/4 in space and perform two time steps of
length k = 1/10.

Possible Solution
Denote xi := ih and tj := jk, and let ui,j be a numerical approximation of
u(xi, tj).

The left hand side of the PDE can be discretised (in order to obtain an
explicit method) as

∂u

∂t
(xi, tj) ≈

ui,j+1 − ui,j
k

,

and the right hand side as

tju(xi, tj) + ∂2u

∂x2 (xi, tj) ≈ jkui,j + ui−1,j − 2ui,j + ui+1,j

h2 .

Thus one obtains
ui,j+1 − ui,j

k
= jkui,j + ui−1,j − 2ui,j + ui+1,j

h2

8



or, explicitly,

ui,j+1 = ui,j + k
(
jkui,j + ui−1,j − 2ui,j + ui+1,j

h2

)
.

With h = 1/4 and k = 1/10, this becomes

ui,j+1 = ui,j + j

100ui,j + 8
5(ui−1,j − 2ui,j + ui+1,j).

Now we use the initial condition u(x, 0) = x in order to obtain that
u0,0 = 0,

u1,0 = 1
4 ,

u2,0 = 1
2 ,

u3,0 = 3
4 ,

u4,0 = 1.
Thus

u1,1 = u1,0 + 0 + 8
5(u0,0 − 2u1,0 + u2,0) = 1

4 ,

u2,1 = u2,0 + 0 + 8
5(u1,0 − 2u2,0 + u3,0) = 1

2 ,

u3,1 = u3,0 + 0 + 8
5(u2,0 − 2u3,0 + u4,0) = 3

4 .

For the next iteration, we use the boundary conditions
u0,1 = 0 and u4,1 = 1,

and obtain

u1,2 = u1,1 + 1
100u1,1 + 8

5(u0,1 − 2u1,1 + u2,1) = 101
400 = 0.2525,

u2,2 = u2,1 + 1
100u2,1 + 8

5(u1,1 − 2u2,1 + u3,1) = 101
200 = 0.505,

u3,2 = u3,1 + 1
100u3,1 + 8

5(u2,1 − 2u3,1 + u4,1) = 303
400 = 0.7575.

Problem 8
Use the Fourier transformation for solving the partial differential equation

∂u

∂t
(x, t) = t

∂2u

∂x2 (x, t), x ∈ R, t > 0,

with initial condition
u(x, 0) = e−

x2
2 , x ∈ R.
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Possible Solution
We apply the Fourier transformation (with respect only to the x-variable) to
the given PDE and obtain

∂û

∂t
(ω, t) = −tω2û(ω, t).

For every ω ∈ R, this is an ODE with respect to t, with solution

û(ω, t) = C(ω)e−ω2t2
2 .

In order to find C(ω), we use the initial condition, which, after a Fourier
transformation, reads as

û(ω, 0) = e−
ω2
2 .

Thus
C(ω) = e−

ω2
2 ,

and we obtain
û(ω, t) = e−

ω2
2 e−

ω2t2
2 = e−ω

2 t2+1
2 .

Finally we compute the inverse Fourier transform of û and obtain

u(x, t) = F−1(û(ω, t)) = 1√
t2 + 1

e
− x2

2(t2+1) .

Problem 9a
Given the equation

∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y) + 5u(x, y) = 0, 0 < x < π, 0 < y < π/4,

find all solutions of the form u(x, y) = F (x)G(y) that satisfy the boundary
conditions

u(0, y) = 0 and u(π, y) = 0, 0 < y < π/4.

Possible Solution
Inserting the function u(x, y) = F (x)G(y) into the PDE, we obtain the equa-
tion

F ′′(x)G(y) + F (x)G′′(y) + 5F (x)G(y) = 0,
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which we rewrite as
F ′′(x)
F (x) = −G

′′(y)
G(y) − 5.

Now the left hand side only depends on x while the right hand side only
depends on y, which implies that both sides need to be constant, say equal
to k for some k ∈ R. We thus obtain that

F ′′(x) = kF (x),
G′′(y) = (5− k)G(y).

We now consider the different possibilities for k.

• k = 0:
Here the equation for F has the solution

F (x) = Ax+B.

The boundary condition F (0) = 0 implies that B = 0, and the bound-
ary condition F (π) = 0 then implies that 0 = Aπ, and thus A = 0.
Thus we only obtain the trivial solution F (x) = 0.

• k = p2 > 0:
Here the equation for F has the solution

F (x) = A sinh px+B cosh px.

Now the boundary condition F (0) = 0 implies that B = 0, and the
boundary condition F (π) = 0 then implies that 0 = A sinh pπ, and
therefore A = 0. Again, we only obtain the trivial solution.

• k = −p2 < 0:
Here we obtain for F the solutions

F (x) = A sin px+B cos px.

Again the boundary condition F (0) = 0 implies that B = 0. The
boundary condition F (π) = 0, however, then implies that either A = 0
or p ∈ N. Thus we obtain the non-trivial solution

F (x) = sin px

with p ∈ N.
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Now we turn to the solution of the equation

G′′(y) = (5− k)G(y) = (5 + p2)G(y),

which has the solution

G(y) = A cosh(
√

5 + p2y) +B sinh(
√

5 + p2y).

In total, we therefore obtain the nontrivial solutions

u(x, y) = sin(px)
(
A cosh(

√
5 + p2y) +B sinh(

√
5 + p2y)

)
for p ∈ N.

Problem 9b
Find the solution of the problem in part a) that in addition satisfies the
boundary conditions

u(x, 0) = sin(x), 0 < x < π,

u(x, π/4) = sin(x), 0 < x < π.

Possible Solution
Using the results of Problem 9a, we obtain that

u(x, y) =
∞∑
p=1

sin(px)
(
Ap cosh(

√
5 + p2y) +Bp sinh(

√
5 + p2y)

)
for some coefficients Ap, Bp ∈ R, p ∈ N.

The boundary condition u(x, 0) = sin(x) now yields that

sin x = u(x, 0) =
∞∑
p=1

sin(px)Ap ,

which immediately implies that

A1 = 1 and Ap = 0 for p ≥ 2.

That is,

u(x, y) = sin(x) cosh(
√

6y) +
∞∑
p=1

Bp sin(px) sinh(
√

5 + p2y).
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Now we insert the second boundary condition u(x, π/2) = sin(x) and obtain
that

sin(x) = sin(x) cosh(
√

6π/2)+B1 sin(x) sinh(
√

6π/2)+
∞∑
p=2

Bp sin(px) sinh(
√

5 + p2y).

This implies that Bp = 0 for p ≥ 2 and

B1 = −cosh(
√

6π/2)
sinh(

√
6π/2)

Thus

u(x, y) = sin x cosh(
√

6y)− cosh(
√

6π/2)
sinh(

√
6π/2)

sin x sinh(
√

6y).
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