In all problems you are supposed to show the details of your work and describe what you are doing.

Kreyszig, Chap. 19.2

1 The equation $2 x^{3}+5 x^{2}-4 x+\sin (x)=0$ has a solution between -3 and -4 . Use Newton's method with $x_{0}=-3.5$ to approximate the solution. Perform five iterations.

2 a) Derive Newton's method for the solution of the equation $x^{n}=a$ where n is a natural number and $a>0.1$
b) Use Newton's method to approximate a solution of the equation $x^{2}=24$. Use $x_{0}=5$ as starting value and perform five iterations.

3 Use the secant method for solving the equation $\cos (x)=x$. Use the starting values $x_{0}=0.5$ and $x_{1}=1$, and perform five iterations.

Kreyszig, Chap. 19.3

4 Find the interpolation polynomial of smallest degree that interpolates the points in the following data set:

x_{i}	-2	-1	0	1	2
$f\left(x_{i}\right)$	-1	3	1	-1	3

5 Approximate the function $\sin (x)$ on the interval $[0,1]$ by an interpolation polynomial $p(x)$ of degree 4 with interpolation points $x_{0}=0, x_{1}=1 / 4, x_{2}=1 / 2, x_{3}=3 / 4$, $x_{4}=1$. In addition, estimate the approximation error $p(1 / 8)-\sin (1 / 8)$ at the point $x=1 / 8$ without actually evaluating p.

[^0]
[^0]: ${ }^{1}$ For $n=2$ (that is, computation of square roots), this method actually goes back to antiquity and is known as "Heron's method" or the "Babylonian method". See http://en.wikipedia.org/wiki/Methods_ of_computing_square_roots\#Babylonian_method

