- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4125 Matematikk 4N

Solution

Academic contact during examination:
Phone:

Examination date: May 15, 2023
Examination time (from-to): 9:00-13:00
Permitted examination support material: C.
One sheet A4 paper, approved by the department (yellow sheet, "gul ark") with own handwritten notes.
Certain simple calculators.

Other information:

- All answers have to be justified, and they should include enough details in order to see how they have been obtained.
- Good Luck! | Lykke til! | Viel Glück!

Language: English

Number of pages: 16
Number of pages enclosed: 0
Checked by:

```
Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig a 2-sidig }
sort/hvit \otimes farger \square
skal ha flervalgskjema 口
```

In the exam one could obtain 100 points and the exam was graded using the usual grading scheme, i.e.

A	B	C	D	E	F
$100-89$	$88-77$	$76-65$	$64-53$	5^{2-41}	40 and less

And the grades are distributed as follows

A	B	C	D	E	F	\sum
4	16	45	80	105	63	313
1.3%	5.1%	14.4%	25.6%	33.5%	20.1%	

Problem 1. (Fixed-point iterations, 14 points)
We get the following Python code of two fix point iterations

```
def fix_point_iteration1(x, N):
    for n in range(N)
        x = (x+5) / (x+1)
    return x
def fix_point_iteration2(x0, N):
    for n in range(N):
        x = (3*x**2-5) / (2*x)
    return x
```

where we assume we are looking for a fix point $x^{*} \geq 0$.
a) The code contains two syntactic errors (i.e. the math formulae are correct). Find them and fix them.
b) Which two fix point iterations are performed?

Determine both funcions $g_{1}(x)$ and $g_{2}(x)$ used in the code as well as their (nonnegative) fixed point(s).
c) How do we have to choose a non-negative starting point $x_{0} \geq 0$ for the first method to converge?
d) What about the convergence of the second method?

Solution.

a) The first function is missing a : at the end of the for-loop, the second mixes $\times 0$ and x as variables for the iterates (2 P.)
b) The functions read $g_{1}(x)=\frac{x+5}{x+1}$ and $g_{2}(x)=\frac{3 x^{2}-5}{2 x}$.

Since

$$
\begin{equation*}
x=\frac{x+5}{x+1} \Leftrightarrow x(x+1)=5+x \Leftrightarrow x^{2}+x=5+x \Leftrightarrow x^{2}=5 \tag{2P.}
\end{equation*}
$$

and

$$
\begin{equation*}
x=\frac{3 x^{2}-5}{2 x} \Leftrightarrow 2 x^{2}=3 x^{2}-5 \Leftrightarrow-x^{2}=-5 \Leftrightarrow x^{2}=5 \tag{3P.}
\end{equation*}
$$

both aim to compute the same fix point $x^{*}=\sqrt{5}$
c) We need the derivative of g_{1} which reads

$$
g_{1}^{\prime}(x)=\frac{1 \cdot(x+1)-(x+5) \cdot 1}{(x+1)^{2}}=-\frac{4}{(x+1)^{2}} .
$$

For the method to converge, we have to find an interval $[a, b]$ on the non-negative real line, such that for all $x_{0} \in[a, b]$ we have

- $g 1 \in C^{1}([a, b])$
- $g_{1}([a, b]) \subset[a, b]$
- $\left|g_{1}^{\prime}\left(x_{0}\right)\right| \leq L<1$

Let's start with the second point. We need

$$
\left|g_{1}^{\prime}(x)\right|=\frac{4}{(x+1)^{2}}<1 \Leftrightarrow 4<(x+1)^{2}
$$

Now since $x \geq 0$ we can take the square root on both sides and obtain $2<x+1$ or $x>1$. On the interval $(1, \infty)$ we also have that $\frac{x+5}{x+1}=1+\frac{4}{x+1}>1$, so the first point also holds and the fix point iteration converges for all $x>1$.

One can also manually check that indeed for any $x \geq 0$ the method converges, since $x+5>x+1$ for any positive x and hence the first iterate is larger than 1 .
d) For the second method the derivative reads

$$
g_{2}^{\prime}(x)=\frac{(6 x) \cdot(2 x)-\left(3 x^{2}-5\right) \cdot 2}{4 x^{2}}=\frac{12 x^{2}-6 x^{2}+10}{4 x^{2}}=\frac{3 x^{2}+5}{2 x^{2}}
$$

This is always larger than 1 since $3 x^{2}+5>2 x^{2}$, which is equivalent to $x^{2}+5>0$ which is always true.
So for any starting point $x_{0} \geq 0$ this method does not converge to the fix point. (3 P.)

Problem 2. (B-Splines, 11 points)
We consider the cubic splines $\mathcal{S}_{3, \Delta}$ with knot vector $\Delta=[-1,0,1,2,3]$.
Which of the following functions is in the space $\mathcal{S}_{3, \Delta}$?
State a reason for each of the functions.
a) $f_{1}(x)=3 x^{3}$
b) $f_{2}(x)=\left|x-\frac{1}{2}\right|$
c) $f_{3}(x)=4(x)_{+}^{2}+2(x-2)_{+}^{3}$, where $(y)_{+}= \begin{cases}y & \text { if } y \geq 0 \\ 0 & \text { else }\end{cases}$
d) What is the dimension of the space $\mathcal{S}_{3, \Delta}$?
e) What does it mean for a spline $s(x) \in S_{3, \Delta}$ to be natural?

Solution.

We have to check whether for a function f

1. $\left.f\right|_{I_{j}} \in \mathbb{P}_{3}, I_{j}=\left[x_{j-1}, x_{j}\right]$,
2. $f \in C^{2}[a, b]$,
where we here have $x_{j}=-1+j, j=0, \ldots, 4$. and hence $a=x_{0}=-1, b=x_{4}=3$. We obtain
a) $f_{1}(x)$ is cubic polynomial on $[-1,3]$ and hence a spline.
b) f_{2} is not a polynomial of degree on the interval $[0,1]$ since at $x=\frac{1}{2}$ the function is not differentiable. So both an argument that 1. or that 2. is not fulfilled is enough to conclude that this is not a spline.
c) We first resolve the definitions of $(\cdot)_{+}$and obtain

$$
f_{3}(x)= \begin{cases}0 & \text { for } x \in[-1,0) \\ 4 x^{2} & \text { for } x \in[0,2) \\ 4 x^{2}+2(x-2)^{3} & \text { for } x \in[2,3]\end{cases}
$$

and we see that in every segment we have a polynomial of degree at most 3 , so 1 . is fulfilled

It remains to check the points $0,2,3$ to see whether the function is continuous
We compute the first and second derivative
$f_{3}^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { for } x \in[-1,0), \\ 8 x & \text { for } x \in[0,2), \\ 8 x+6(x-2)^{2} & \text { for } x \in[2,3] .\end{array} \quad\right.$ and $\quad f_{3}^{\prime \prime}(x)= \begin{cases}0 & \text { for } x \in[-1,0), \\ 8 & \text { for } x \in[0,2), \\ 8+12(x-2) & \text { for } x \in[2,3] .\end{cases}$
The first derivative is still continuous, but the second is not, since

$$
\left.f_{3}^{\prime \prime}(0)\right|_{[-1,0]}=0 \neq 8=\left.f_{4}^{\prime \prime}(0)\right|_{[0,1]} .
$$

and we do not have a spline in this case.
d) The dimension of the space is $n+k$, where $n+1$ is the number of nodes (since we denote them by x_{0}, \ldots, x_{n}), and k is the polynomial degree. Here we have $n+1=5$ nodes so $n=4$ and polynomial degree $k=3$ so the dimension is 7.(1P.)
e) A spline s is called natural if the second derivative vanishes at the boundary, here $s^{\prime \prime}(-1)=s^{\prime \prime}(3)=0$.
(2 P.)

Problem 3. (Fourier Series, 14 points)
a) Let the function $g(x)=-x, x \in[0, \pi]$, be given and consider the 2π-periodic function f_{3} obtained from the even extension g_{e} of g defined on $[-\pi, \pi]$ by periodisation.
Sketch the function f_{3} on at least 3 intervals.
b) Compute all coefficients of the real Fourier series of f_{3} from a).
c) Consider the 2π-periodic function $f_{1}(x)=7 \mathrm{e}^{-\mathrm{i} x}+5 \mathrm{e}^{3 \mathrm{i} x}+3 \mathrm{e}^{-5 \mathrm{i} x}+\mathrm{e}^{7 \mathrm{i} x}, x \in[-\pi, \pi)$. Compute all coefficients of the complex Fourier series of f_{1}.
d) Consider the 2π-periodic function $f_{2}(x)=2(\cos (2 x))^{2}+2 \sin (4 x)-2 \cos (8 x)$, $x \in[-\pi, \pi)$.
Compute all coefficients of the complex Fourier series of f_{2}.

Solution.

a) The sketch looks like

b) We can use the the even extension is an even function. Hence $b_{n}=0$ for $n=$ $1,2, \ldots$
For the a_{n} we use, that integrating over half an interval and multiplying that by 2 yields the result. Hence
(1 P.)

$$
a_{0}=\frac{2}{2 \pi} \int_{0}^{\pi} g(x) \mathrm{d} x=-\frac{1}{\pi} \int_{0}^{\pi} x \mathrm{~d} x=-\frac{\pi}{2}
$$

and

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} g(x) \cos (n x) \mathrm{d} x=-\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) \mathrm{d} x
$$

where we apply integration by parts. We have in $\int f g^{\prime} \mathrm{d} x=f g-\int f^{\prime} g \mathrm{~d} x$ here with $f(x)=x$ and $g^{\prime}(x)=\cos (n x)$ so $f^{\prime}(x)=1$ and $g(x)=\frac{1}{n} \sin (n x) \quad$ (2 P.)

$$
-\frac{2}{\pi}\left(\left.\frac{x}{n} \sin (n x)\right|_{0} ^{\pi}-\int_{0}^{\pi} 1 \cdot \frac{1}{n} \sin (n x) \mathrm{d} x\right)=\frac{2}{n \pi} \int_{0}^{\pi} \sin (n x) \mathrm{d} x
$$

since $\sin (n \pi)=\sin (0)=0$ for all n. Now we just have to integrate and obtain (1 P.)

$$
a_{n}=-\left.\frac{2}{\pi n^{2}} \cos (n x)\right|_{0} ^{\pi}=-\frac{2}{\pi n^{2}}(\cos (n \pi)-\cos (0))=-\frac{2}{\pi n^{2}}\left((-1)^{n}-1\right)
$$

Since $\cos (0)=1$ and $\cos (n \pi)= \begin{cases}1 & \text { if } n \text { even, } \\ -1 & \text { if } n \text { odd, }\end{cases}$
the coefficient can further be simplified to

$$
a_{n}= \begin{cases}\frac{4}{\pi n^{2}} & \text { if } n \text { odd } \\ 0 & \text { if } n \text { even }\end{cases}
$$

c) We can directly read off $c_{-1}=7, c_{3}\left(f_{1}\right)=5, c_{-5}\left(f_{1}\right)=3, c_{7}\left(f_{1}\right)=1$ and all other coefficients are zero.
d) We can write $2(\cos (2 x))^{2}=\cos (4 x)+1$. Hence the function reads

$$
f_{2}(x)=\cos (4 x)+1+2 \sin (4 x)-2 \cos (8 x)
$$

and can directly read off the real coefficients $a_{0}=1, a_{4}=1, b_{4}=2$ and $a_{8}=-2$ and all others are zero. This means for the complex coefficients, that

- $c_{0}=a_{0}=1$
- $c_{4}=\frac{1}{2}\left(a_{4}-\mathrm{i} b_{4}\right)=\frac{1}{2}-\mathrm{i}$
- $c_{-4}=\frac{1}{2}+\mathrm{i}$ (either the same way as above or since f_{2} is real)
- $c_{8}=c_{-8}=-1\left(\right.$ since $\left.b_{8}=0\right)$
- all other coefficients are zero.

Problem 4. (Discrete Fourier Transform, 12 points)
In this task we consider the discrete Fourier Transform (DFT) for signals of length $n=5$. We denote by $w_{5}=\mathrm{e}^{-2 \pi \mathrm{i} / 5}$.
a) Using w_{5}, what does the Fourier matrix \mathcal{F}_{5} look like?
b) Assume $\mathbf{f}=\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right)$, is given by $f_{i}=g\left(x_{j}\right), x_{j}=\frac{2 \pi j}{N}, i=0, \ldots$, 4, i.e. sampling a 2π-periodic function g, which is known to be bandlimited, that is $c_{k}(g)=0$ for $|k|>k_{\text {max }}>0$.
What is the highest frequency $k_{\max } \in \mathbb{N}$ where you can reconstruct g from $\hat{\mathbf{f}}=\mathcal{F}_{5} \mathbf{f}$?

What happens if frequencies $k>k_{\text {max }}$ occur?
c) What does the inverse $\operatorname{DFT}_{5} \mathcal{F}_{5}^{-1} \hat{\mathbf{f}}$ look like for $\hat{\mathbf{f}}=(c, 0,0,0,0), c \in \mathbb{R}$?

Solution.

a) We have

$$
\mathcal{F}_{5}=\left(w_{5}^{j k}\right)_{j, k=0}^{4}=\left(\begin{array}{ccccc}
w_{5}^{0} & w_{5}^{0} & w_{5}^{0} & w_{5}^{0} & w_{5}^{0} \\
w_{5}^{0} & w_{5}^{1} & w_{5}^{2} & w_{5}^{3} & w_{5}^{4} \\
w_{5}^{0} & w_{5}^{2} & w_{5}^{4} & w_{5}^{1} & w_{5}^{3} \\
w_{5}^{0} & w_{5}^{3} & w_{5}^{1} & w_{5}^{4} & w_{5}^{2} \\
w_{5}^{0} & w_{5}^{4} & w_{5}^{3} & w_{5}^{2} & w_{5}^{1}
\end{array}\right)
$$

b) The highest frequency is $k_{\max }=2$,
since periodicity of the discrete Fourier coefficients yields in this case

$$
\hat{f}_{0}=c_{0}(g), \quad \hat{f}_{1}=c_{1}(g), \quad \hat{f_{2}}=c_{2}(g), \quad \hat{f}_{3}=c_{-2}(g), \quad \hat{f}_{4}=c_{-1}(g)
$$

If higher frequencies occur we observe the aliasing effect
c) This set of discrete Fourier coefficients stems from a bandlimited function g with only $\hat{f}_{0}=N c_{0}(g)=c$ and hence so we have $c_{0}(g)=\frac{c}{5}$ and $c_{k}(g)=0,|k|>0$ hence g is a constant function and using the same idea as in b) we get $\mathbf{f}=\frac{1}{5}(c, c, c, c, c)$. (4 P.)

Problem 5. (Separation of Variables, 14 points)
Find all non-trivial solutions of the equation

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad \text { where }-\frac{\pi}{2}<x<\frac{\pi}{2}, \quad \text { and } t>0
$$

that are of the form $u(x, t)=F(x) G(t)$ and that satisfy the boundary conditions

$$
u\left(-\frac{\pi}{2}, t\right)=0 \quad \text { and } \quad u\left(\frac{\pi}{2}, t\right)=0 \quad \text { for } t>0 .
$$

What would you additionally need to obtain a unique solution?

Solution.

We insert the equation $u(x, t)=F(x) G(t)$ into the PDE and obtain the equation (1 P.)

$$
\begin{equation*}
F(x) \dot{G}(t)=2 F^{\prime \prime}(x) G(t) \tag{1P.}
\end{equation*}
$$

Dividing by $2 G(t)$ and $F(x)$ yields the equation

$$
\begin{equation*}
\frac{\dot{G}(t)}{2 G(t)}=\frac{F^{\prime \prime}(x)}{F(x)}=k, \tag{1P.}
\end{equation*}
$$

where k is some constant. From this we obtain the two ODEs

$$
\left.\begin{array}{rl}
F^{\prime \prime} & =k F \\
\dot{G} & =2 k G
\end{array}\right\}
$$

We consider now the possible solutions of the equation for F. Thus we have three possibilities:
$k>0$: Denote $p=\sqrt{k}>0$. Then we have the solution

$$
F(x)=A \mathrm{e}^{p x}+B \mathrm{e}^{-p x} .
$$

From the boundary conditions $F\left(\frac{\pi}{2}\right)=F\left(-\frac{\pi}{2}\right)=0$ we get

$$
F\left(\frac{\pi}{2}\right)=A \mathrm{e}^{p \frac{\pi}{2}}+B \mathrm{e}^{-p \frac{\pi}{2}}=0 \quad \text { and } F\left(-\frac{\pi}{2}\right)=A \mathrm{e}^{-p \frac{\pi}{2}}+B \mathrm{e}^{p \frac{\pi}{2}}=0
$$

Which is equivalent to $A=-B \mathrm{e}^{-p \pi}$, plugging this into the second yields $B=0$ and hence with the first $A=0$. So this only yields the trivial solution, $F \sim 0$ we are not interested in.
$k=0$: Here we have the $\operatorname{ODE} F^{\prime \prime}=0$, which has the general solution

$$
F(x)=A+B x .
$$

Now we get from the boundary conditions that

$$
\begin{aligned}
F\left(-\frac{\pi}{2}\right) & =A-B \frac{\pi}{2}=0, \\
F\left(\frac{\pi}{2}\right) & =A+B \frac{\pi}{2}=0 .
\end{aligned}
$$

Adding both yields $2 A=0$ and hence $A=0$ subtracting both yields $\pi B=0$ and hence $B=0$.
We again only obtain the trivial solution.
$k<0$: Denote $p=\sqrt{-k}>0$. Then we have the solution

$$
F(x)=A \cos (p x)+B \sin (p x) .
$$

Now the boundary conditions become

$$
\begin{array}{r}
F\left(-\frac{\pi}{2}\right)=A \cos \left(-p \frac{\pi}{2}\right)+B \sin \left(-\frac{\pi}{2} p\right)=0 \tag{2P.}\\
F\left(\frac{\pi}{2}\right)=A \cos \left(p \frac{\pi}{2}\right)+B \sin \left(p \frac{\pi}{2}\right)=0 .
\end{array}
$$

Because the cosine is an even function and the sine is an odd function, we can rewrite this as

$$
\begin{aligned}
& A \cos \left(p \frac{\pi}{2}\right)-B \sin \left(p \frac{\pi}{2}\right)=0, \\
& A \cos \left(p \frac{\pi}{2}\right)+B \sin \left(p \frac{\pi}{2}\right)=0 .
\end{aligned}
$$

If we now add the two equations, we get that $A \cos \left(p \frac{\pi}{2}\right)=0$. Thus either $A=0$ or $\cos \left(p \frac{\pi}{2}\right)=0$. Moreover, $\cos \left(p \frac{\pi}{2}\right)=0$ if and only if $p=2(n+1 / 2)$ with $n=1,2,3, \ldots$
If we subtract the second equation from the first, we get that $B \sin (p)=0$, which holds if either $B=0$ or $\sin \left(p \frac{\pi}{2}\right)=0$, the latter implying that $p=2 n$ with $n=1,2,3, \ldots$
We thus have two different types of solutions:

- On the one hand, we have the solutions

$$
F(x)=\cos (2(n+1 / 2) x) \quad \text { for } n=1,2, \ldots
$$

Here $p=2(n+1 / 2)$ and $k=-p^{2}=-4(n+1 / 2)^{2}$, and thus the corresponding solution for G is

$$
G(t)=C \mathrm{e}^{-2 k t}=C \mathrm{e}^{-8(n+1 / 2)^{2} t} .
$$

- On the other hand, we have the solutions

$$
F(x)=\sin (2 n x) \quad \text { for } n=1,2, \ldots
$$

Here $p=2 n$ and $k=-p^{2}=-4 n^{2}$, and thus the corresponding solution for G is

$$
G(t)=C \mathrm{e}^{2 k t}=C \mathrm{e}^{-8 n^{2} t} .
$$

In total, we have the non-trivial solutions

$$
u(x, t)=A \mathrm{e}^{-8(n+1 / 2)^{2} t} \cos (2(n+1 / 2) x) \quad \text { for } n=1,2, \ldots
$$

and

$$
u(x, t)=A \mathrm{e}^{-8 n^{2} t} \sin (2 n x) . \quad \text { for } n=1,2, \ldots
$$

In order to obtain a unique solution we would need initial conditions $u(x, 0)=f(x), x \in$ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Problem 6. (Laplace transform, 13 points)
Using the Laplace transform, solve the ordinary differential equation

$$
y^{\prime \prime}+4 y=(t-2) u(t-2)
$$

with initial conditions $y(0)=y^{\prime}(0)=0$, and with u denoting the Heaviside function.

Solution.

Applying the Laplace transform to the ODE, we get

$$
\begin{equation*}
s^{2} Y(s)+4 Y(s)=\mathcal{L}((t-2) u(t-2)) \tag{3P.}
\end{equation*}
$$

where $\mathcal{L}((t-2) u(t-2))=\mathcal{L}(f(t-2) u(t-2))=\mathrm{e}^{-2 s} F(s)$ where we here have $f(t)=t$ and hence $F(s)=\frac{1}{s^{2}}$.

Plugging this in and dividing by $s^{2}+4$ we obtain

$$
\begin{equation*}
Y(s)=\mathrm{e}^{-2 s} \frac{1}{s^{2}} \frac{1}{s^{2}+4} \tag{2P.}
\end{equation*}
$$

The first factor just yields a shift, so we are left to compute the inverse Laplace transform

$$
\begin{equation*}
\mathcal{L}^{-1}\left(\frac{1}{s^{2}\left(s^{2}+4\right)}\right) \tag{4P.}
\end{equation*}
$$

which is a product Laplace domain, so a convolutions in time. It reads

$$
\begin{aligned}
t * \frac{1}{2} \sin (2 t) & =\frac{1}{2} \int_{0}^{t}(t-\tau) \sin (2 \tau) \mathrm{d} \tau \\
& =\frac{1}{2}\left(\left.(t-\tau)\left(-\frac{1}{2} \cos (2 \tau)\right)\right|_{0} ^{t}-\int_{0}^{t}(-1)\left(-\frac{1}{2} \cos (2 \tau)\right) \mathrm{d} \tau\right) \\
& =\frac{1}{2}\left(0-\left(-t \cdot \frac{1}{2} \cdot 1 t\right)-\left.\frac{1}{4} \sin (2 \tau)\right|_{0} ^{t}\right) \\
& =\frac{1}{4}\left(t-\frac{1}{2} \sin (2 t)\right) .
\end{aligned}
$$

Alternatively. We can do a partial fraction decomposition of said term

$$
\frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{A}{s^{2}}+\frac{B}{s^{2}+4} \quad \Leftrightarrow 1=1+0 s=A\left(s^{2}+4\right)+B s^{2}=(A+B) s^{2}+4 A
$$

Formally this would also include $A+C s$ and $B+D s$ but C, D lead to odd order terms that do not appear on the left.

By comparison of coefficients we obtain $A+B=0$ so $A=-B$ and $1=4 A$
Hence $A=\frac{1}{4}$ and $B=-\frac{1}{4}$ We can combine this to

$$
\frac{1}{4}\left(\frac{1}{s^{2}}-\frac{1}{2} \cdot \frac{2}{s^{2}+2^{2}}\right)
$$

which yields the same inverse Laplace transform as above, i.e. $y(t)=\frac{1}{4}\left(t-\frac{1}{2} \sin (2 t)\right)$ so together with the shift we obtain

$$
y(t)=\frac{1}{4}\left((t-2)-\frac{1}{2} \sin (2(t-2))\right) u(t-2)
$$

Problem 7. (Convolution, 12 points)
Using the Laplace transform, solve the integro-differential equation

$$
y(t)+2 \int_{0}^{t} y(\tau) \mathrm{e}^{5(t-\tau)} \mathrm{d} \tau=\sin (3 t)-\cos (3 t)
$$

Solution.

We compute the Laplace transform on both sides and obtain due to the convglution theorem that

$$
Y(s)+\frac{2}{s-5} Y(s)=\frac{3}{s^{2}+9}-\frac{s}{s^{2}+9}
$$

We simplify the right hand side

$$
Y(s)+\frac{2}{s-5} Y(s)=\left(1+\frac{2}{s-5}\right) Y(s)=\left(\frac{s-5+2}{s-5}\right) Y(s)=\frac{-(s-3)}{s^{2}+9}
$$

Dividing by the factor in front of $Y(s)$ yields by splitting

$$
\begin{equation*}
Y(s)=\frac{-(s-5)}{s^{2}+9}=\frac{5}{3} \frac{3}{s^{2}+9}-\frac{s}{s^{2}+9} \tag{3P.}
\end{equation*}
$$

and hence

$$
y(t)=\frac{5}{3} \sin (3 t)-\cos (3 t)
$$

Problem 8. (Numerical Methods for ODEs, 10 points)
We consider the following Runge-Kutta method for solving a scalar ODE, $y^{\prime}=f(t, y)$, implemented in Python. The main block of the code looks like

```
for n in range(N):
    yn = y[n]
    tn = t[n]
    k1 = f(tn, yn)
    k2 = f(tn+1/3*h,yn+1/3*h*k1)
    k3 = f(tn+2/3*h, yn+2/3*h*k2)
    y[n+1] = yn+h/4*(k1+3*k3)
```

Write down the Butcher-tableau, and determine the order and the number of stages of the method.

Solution.

The Butcher-tableau is given by

$$
\begin{array}{c|ccc}
0 & & & \tag{4P.}\\
1 / 3 & 1 / 3 & & \\
2 / 3 & 0 & 2 / 3 & \\
\hline & 1 / 4 & 0 & 3 / 4
\end{array}
$$

The method has $s=3$ stages.
We have to check the order conditions. We use that $c_{1}=0$.

$$
\begin{array}{lcl}
p=1 & b_{1}+b_{2}+b_{3}=\frac{1}{4}+0+\frac{3}{4}=1 & \text { OK } \\
p=2 & b_{1} c_{1}+b_{2} c_{2}+b_{3} c_{3}=\frac{1}{4} \cdot 0+0 \cdot \frac{1}{3}+\frac{3}{4} \cdot \frac{2}{3}=1 / 2 & \text { OK } \\
p=3 & b_{1} c_{1}^{2}+b_{2} c_{2}^{2}+b_{3} c_{3}^{2}=\frac{1}{4} \cdot 0^{2}+0 \cdot \frac{1}{9}+\frac{3}{4} \cdot \frac{4}{9}=1 / 3 & \text { OK } \\
p=3 & b_{3} a_{32} c_{2}=\frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{1}{6}=1 / 6 & \text { OK } \\
p=4 & b_{1} c_{1}^{3}+b_{2} c_{2}^{3}+b_{3} c_{3}^{3}=b_{3} c_{3}^{3}=\frac{3}{4} \frac{2^{3}}{27}=\frac{2}{9} \neq \frac{1}{4} &
\end{array}
$$

The first order 4 condition is not satisfied, so the method is of order 3 .

Formula Sheet.

Fourier Transform. The Fourier Transform $\hat{f}=\mathcal{F}(f)$ and its inverse $f=\mathcal{F}^{-1}(\hat{f})$ are
$\hat{f}(\omega)=\mathcal{F}(f)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \quad$ and $\quad f(x)=\mathcal{F}^{-1}(\hat{f})(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega$
Laplace Transform. The Laplace transform $F(s)$ of $f(t), t \geq 0$, reads

$$
F(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t
$$

List of Fourier Transforms.

$f(x)$	$\hat{f}(\omega)$
$\mathrm{e}^{-a x^{2}}$	$\frac{1}{\sqrt{2 a}} \mathrm{e}^{-\frac{\omega^{2}}{4 a}}$
$\mathrm{e}^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \frac{a}{\omega^{2}+a^{2}}$
$\frac{1}{x^{2}+a^{2}}$ for $a>0$	$\sqrt{\frac{\pi}{2}} \frac{\mathrm{e}^{-a\|\omega\|}}{a}$
$\begin{cases}1 & \text { for }\|x\|<a \\ 0 & \text { otherwise }\end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin (\omega a)}{\omega}$
$\sqrt{\frac{2}{\pi}} \frac{\sin (a x)}{x}$	$\begin{cases}1 & \text { for }\|\omega\|<a \\ 0 & \text { otherwise }\end{cases}$

List of Laplace Transforms.

$f(t)$	$F(s)$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (\omega t)$	$\frac{s}{s^{2}-\omega^{2}}$
$\sinh (\omega t)$	$\frac{\omega}{s^{2}-\omega^{2}}$

t^{n}	$\frac{n!}{s^{n+1}}$
$\mathrm{e}^{a t}$	$\frac{1}{s-a}$
$f(t-a) u(t-a)$	$\mathrm{e}^{-s a} F(s)$
$\delta(t-a)$	$\mathrm{e}^{-s a}$

Trigonometric identities.

- $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \quad \cdot 2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$
- $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
- $2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta)$
- $\cos (2 \alpha)=2 \cos ^{2}(\alpha)-1=1-2 \sin ^{2}(\alpha)$
- $\mathrm{e}^{\mathrm{i} \alpha}=\cos \alpha+\mathrm{i} \sin \alpha$
- $2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)$
- $2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)$

Integrals.

- $\int x^{n} \cos a x \mathrm{~d} x=\frac{1}{a} x^{n} \sin a x-\frac{n}{a} \int x^{n-1} \sin a x \mathrm{~d} x$
- $\int x^{n} \sin a x \mathrm{~d} x=-\frac{1}{a} x^{n} \cos a x+\frac{n}{a} \int x^{n-1} \cos a x \mathrm{~d} x$

Order conditions for Runge-Kutta methods

p	Conditions	p	Conditions
1	$\sum_{i=1}^{s} b_{i}=1$	4	$\sum_{i=1}^{s} b_{i} c_{i}{ }^{3}=\frac{1}{4}$
2	$\sum_{i=1}^{s} b_{i} c_{i}=\frac{1}{2}$		$\sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} c_{i} a_{i j} c_{j}=\frac{1}{8}$
3	$\sum_{i=1}^{s} b_{i} c_{i}{ }^{2}=\frac{1}{3}$		$\sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} a_{i j} c_{j}{ }^{2}=\frac{1}{12}$
	$\sum_{i=1}^{s} \sum_{j=1}^{s} b_{i} a_{i j} c_{j}=\frac{1}{6}$		$\sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{k=1}^{s} b_{i} a_{i j} a_{j k} c_{k}=\frac{1}{24}$

