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1 Introduction
In your mathematical courses so far, you have learned how to solve different mathematical problems, like
linear and nonlinear equations and differential equations. You have learned how to differentiate and to
integrate functions. Unfortunately, only simplified models from "real life" applications can be treated by
these techniques, more complex and realistic problems the best we can aim for is some kind of approximate
solution, found on a computer by some clever numerical algorithms. In this part of the course, our concern
is how to develop, analyse, implement and test a selection of such algorithms.

In this note, we will present some mathematical results that will be used frequently, as well as some
definitions and concepts. Most of it should be known from previous courses, in particular from Mathematics
1 and 3.

Whenever some theoretical error analysis has been established, it should be verified numerically. This is
done based on a test problem with a known exact solution, so the error in our numerical experiment can be
evaluated, and the theory numerically verified. Examples of such verifications will be demonstrated.

2 Vector spaces and norms
Real vector space.

A real vector space is a set V together with the operations + (addition) and · (scalar multiplication)
which for all x, y, z ∈ V and α, β ∈ R satisfy the following conditions:

1) x+ y ∈ V
2) x+ y = y + x

3) x+ (y + z) = (x+ y) + z

4) There exist a 0 ∈ V such that x+ 0 = x

5) For all x ∈ V there is a −x ∈ V such that x+ (−x) = 0
6) αx ∈ V
7) α(βx) = (αβ)x
8) 1x = x

9) α(x+ y) = αx+ αy

10) (α+ β)x = αx+ βx

Examples: The following vector spaces will be used throughout the course:

• Rm is the set of all real vectors with m components.



• Rm×n is the set of all m× n real matrices.

• Cm[a, b] is the set of all functions with continuous first m derivatives on the interval [a, b]. It is
common to use C[a, b] rather than C0[a, b] for all continuous functions.

• Pn is the set of all polynomials of degreeat most n.

Notice that Cn[a, b] ⊂ Cm[a, b] if n > m. Further, Pn ⊂ C∞[R].

Norms. The norm ‖ · ‖ of an element x in a vector space V is essentially a measure of the size of the
element. The norm obeys the following rules:

Norm ‖ · ‖.

For all x, y ∈ V and α ∈ R the following holds

‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x ≡ 0
‖αx‖ = |α| ‖x‖,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality).

Norms for C[a, b] and Rm:

• For f ∈ C[a, b] we will use:

either ‖f‖∞ = maxx∈[a,b] |f(x)|.

or ‖f‖2 =
√∫ b

a
f(x)2dx.

• For x ∈ Rm we will use:

either ‖x‖∞ = maxmi=1 |xi|,

or ‖x‖2 =
√∑m

i=1 x
2
i .

Note that we will use bold symbols for vectors x ∈ Rm.

As is demonstrated in these examples, the norm to which we refer is usually marked with a subscript. We
will always use the absolute value as the norm of a real number, thus ‖x‖ = |x| whenever x ∈ R.

Example 1: Let x = [1,−6, 3,−1, 5]T ∈ R5. Then

‖x‖2 =
√

1 + 36 + 9 + 1 + 25 = 8.4853,
‖x‖∞ = max{1, 6, 3, 1, 5} = 6.

Norms of vectors in Rm are implemented in Python, in the module numpy.linalg.

See norm_of_a_vector() in preliminaries.py.

Example 2: Let f(x) = sin(x) on [0, 2π], so f ∈ C∞[0, 2π]. In this case

‖f‖2 =

√∫ 2π

0
sin2(x)dx =

√
π = 1.7725

‖f‖∞ = max
x∈[0,2π]

| sin(x)| = 1.

Norms on function spaces require some sort of numerical approximations. In this case, the interval [0, 2π]
has been divided into N = 1000 uniform subintervals, so xi = (2πi)/N , i = 0, 1, . . . , N . The norm
‖f‖∞ is approximated by maxi |f(xi)|, and the integral required for ‖f‖2 is computed by the trapezoidal
rule.

See norm_of_a_function in preliminaries.py.
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3 Convergence and errors
Convergence of a sequence.

Let {xk}∞k=0 be an infinite sequence of real numbers. The sequence converges to x, if, for any ε > 0
there exist a positive integer N(ε) such that |xk − x| < ε whenever k > N(ε).

Common notations:
lim
k→∞

xk = x or xk → x as k →∞.

Example 3: It is known that the sequence xk = (1 + 1/k)k → e = 2.7182 . . . as k →∞. The sequence
is monotone, so |xk+1 − e| < |xk − e|. The following program demonstrates the concept of convergence for
this sequence: Given an ε, the positive integer N(ε) is returned.

See convergence_sequence in preliminaries.py. Clearly, this code can only be used for monotone
series.

Warning: The sequence converges very slowly, so given a very small epsilon will result in N too large.
This can be compensated by making Nmax larger, and increment k in larger steps.

3.1 Convergence of an iterative process
Let X be the exact solution of a problem, and Xk a numerical approximation achieved by some iterative
process Xk+1 = G(Xk). In this case the iterations converge towards X if

lim
k→∞

‖X −Xk‖ = 0

Let ek = ‖X − Xk‖ measure the error. In practice, you have to choose an appropriate norm, which
depends on the problem and what you might be interesting in measuring. The order of convergence is p if
there exist a positive constant M such that

ek+1 ≤Mepk

Notation: The case p = 1 is called linear convergence, p = 2 is called quadratic convergence and p = 3
cubic convergence.

Numerical verification of the order. To verify the order, we make the assumptions that ek+1 = Cke
p
k,

and that the Ck do not change much from one iteration to the next one. These assumptions are usually
reasonable when the error becomes small. The order p can then be computed numerically by the following
procedure: Take the expressions for the error for two subsequent iterations, assuming that Ck+1 ≈ Ck ≈ C.
Then divide the expression by each other to get rid of the unknown constant C, take the logarithm on
both sides and solve for the order p.

ek+2 ≈ Cepk+1

ek+1 ≈ Cepk
⇒ ek+2

ek+1
≈
(
ek+1

ek

)p
⇒ log

(
ek+2

ek+1

)
≈ p log

(
ek+1

ek

)
⇒ p ≈ log (ek+2/ek+1)

log (ek+1/ek)

We are usually not very interested in the constant C, but given p and the error for two iterations, it can
easily be approximated.

Example 4: Newton’s method applied to the equation f(x) = 0 is given by

xk+1 = xk −
f(xk)
f ′(xk) .

Let r be a solution of the equation. It can be proved that the error r − xk satisfies

r − xk+1 = − f ′′(ξk)
2f ′(xk) (r − xk)2, where ξk is a real number between xk and r.
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Since the error is a real number, its norm is ek = |r − xk| and

ek+1 = Cke
2
k where Ck = |f ′′(ξk)|

2|f ′(xk)| .

Notice that Ck → |f ′′(r)|/(2|f ′(r))| as xk → r.

Let M denote an upper bound for Ck. More precisely: let Iδ = [x− δ, x+ δ] be some interval around the
solution r. Assume there exist constants L and K such that |f ′(x)| ≤ L and |f ′′(x)| ≥ K for all x ∈ Iδ.
Then M = K/(2L) and

ek+1 ≤Me2
k.

The convergence is quadratic, and the iterations converge for all starting values x0 chosen such that

Me0 < 1,

often described as "sufficiently close to the solution".

Let us now verify the theoretical result by applying Newtons method to the problem x2 − a = 0 for some
a > 0. The iterations become

xk+1 = xk −
x2
k − a
2xk

= x2
k + a

2xk
, k = 0, 1, 2, . . . .

with the exact solution r =
√
a. From the discussion above, we expect C ≈ |f ′′(r)/(2f ′(r))| with r =

√
a,

which in our case becomes C ≈ 1/(2
√
a). Use the following code to see if the theoretical considerations

hold in practice:

See ooc_iterations() in preliminaries.py.

3.2 Convergence of h-dependent approximations
Let X be the exact solution, and X(h) some numerical solution depending on a parameter h, and let
e(h) be the norm of the error, so e(h) = ‖X −X(h)‖. The numerical approximation X(h) converges to
X if e(h)→ 0 as h→ 0. The order of the approximation is p if there exists a positive constant M such
that

e(h) ≤Mhp

The Big O-notation: A function f(x) = O(g(x)) as x→ a if and only there exist positive numbers δ
and M such that

|f(x)| ≤M |g(x)| when 0 < |x− a| < δ.

Let a = 0 and the error of an approximation of order p can be written as

e(h) = O(hp).

This is often used when we are not directly interested in any expression for the constant M , we only need
to know it exists.

Numerical verification. The following is based on the assumption that e(h) ≈ Chp for some unknown
constant C. This assumption is usually reasonable for sufficiently small h.

Choose a test problem for which the exact solution is known and compute the error for a sequence of
smaller h’s, for instance hk = H/2k, k = 0, 1, 2, . . . . The procedure is then quite similar to what was done
for iterative processes.

e(hk+1) ≈ Chpk+1

e(hk) ≈ Chpk
⇒ e(hk+1)

e(hk) ≈
(
hk+1

hk

)p
⇒ p ≈ log (e(hk+1)/e(hk))

log (hk+1/hk) .

Since
e(h) ≈ Chp ⇒ log e(h) ≈ logC + p log h,

a plot of e(h) as a function of h using a logarithmic scale on both axes will be a straight line with slope p.
Such a plot is referred to as an error plot or a convergence plot.
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Some terminology. Let X be the exact solution of some problem, and X̃ the numerical approximation
of X. The following concepts are of interest:

• Error : E = X − X̃. This is something which obviously is only known if the exact solution is known
(which it will be in our test problems, but not in real life problems). Still, most error analysis will
start trying to find an expression for this error, but it will typically contain some higher order
derivatives evaluated in some unknown point.

• Error bound : ‖X − X̃‖ ≤ K. If the approximation depend on some parameter h, we typically
search for expressions of the form K = Mhp, if M is known, this can be used to decide how small h
has to be to guarantee that the error is below some tolerance.

• Error estimate: E ≈ ‖E‖. This is an approximation to the error (or the norm of the error) and
something that can be computed and included in practical codes. How to compute these will be
described for each class of problems discussed later in the course.

Example 5: Consider the trapezoidal rule for numerical integration. It is known that∫ b

a

f(x)dx = T (h) + E(h)

where T (h) is the numerical approximation given by

T (h) = h

(
1
2f(x0) +

n−1∑
i=0

f(xi) + 1
2f(xn)

)
, xn = a+ ih, h = b− a

n
,

and the error E(h) is known to be

E(h) = −b− a12 f ′′(ξ)h2, ξ ∈ (a, b).

Assume there exists an M such that |f ′′(x)| ≤M for all x ∈ (a, b). Let e(h) = |E(h)| (notice that E(h) is
a scalar) so

e(h) ≤Mh2.

So the error of the trapezoidal rule is of order 2, and e(h) = O(h2).

Use this to verify the order of the trapezoidal rule, as given above. As test example, choose∫ π

0
sin(x)dx = 2.

In this case, we expect the order p to be 2. The constant C = |f ′′(ξ)|π/12 for some unknown ξ ∈ [0, π].
Thus 0 < C < π/12 = 0.2617 . . . , but we can not be more precise. An upper bound for the error is thus
e(h) ≤ (π/12)h2.

The following code can be used to confirm the result. It also returns an approximation to C, so we can at
least check if it is within the expected bound. See ooc_h() in preliminaries.py.

4 Taylor-expansions
Given a function f ∈ C∞[a, b], choose a point x and an increment h such that x, x+h ∈ [a, b]. The Taylor
expansion of f around x is then given by

f(x+ h) =
∞∑
k=0

hk

k! f
(k)(x).

The function f is called analytic in x if the series converges for sufficiently small values of |h|. In numerics,
we will usually work with the truncated series, also known as the Taylor polynomial of degree m:

f(x+ h) =
m∑
k=0

hk

k! f
(k)(x) +Rm+1(x).
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The remainder term Rm+1(x) is given by

Rm+1(x) = hm+1

(m+ 1)!f
(m+1)(ξ),

where ξ is some unknown point between x and x + h. Unlike the full expansion, constructing the
truncated series only requires that f ∈ C(m+1) near x. The remainder term is often written as Rm+1(x) =
O(hm+1).

5 Some other useful results
Intermediate value theorem: Let f ∈ C[a, b] and let x be some number between f(a) and f(b), then
there exist at least one ξ ∈ (a, b) such that f(ξ) = x.

The generalization of this reads: Given k nodes xi ∈ [a, b] and k positive weights wi > 0, i = 1, . . . , k.
Then there exists at least one ξ ∈ (a, b) such that

k∑
i=1

wif(xi) = f(ξ)
k∑
i=1

wi. (1)

Mean value theorem: Let f ∈ C1[a, b]. Then there exists at least one ξ ∈ (a, b) such that

f ′(ξ) = f(b)− f(a)
b− a

(2)

Rolle’s theorem: Let f ∈ C1[a, b] and f(a) = f(b) = 0. Then there exists at least one ξ ∈ (a, b) such
that f ′(ξ) = 0. This is just a special case of the Mean value theorem.

Mean value theorem for integrals: Let f ∈ C[a, b] and g an integrable function that does not change
sign on [a, b]. Then there exists a ξ ∈ (a, b) such that∫ b

a

f(x)g(x)dx = f(ξ)
∫ b

a

g(x)dx. (3)
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