Plenumsregning matte 4 N
23.01

Problem 1 (Taylor expansion)
Compute the Taylor expansion of $f(x)=(1-x)^{-1}$ about 0 , (at some $|x|<1$).

$$
\begin{aligned}
& f^{\prime}(x)=(1-x)^{-2} \\
& f^{\prime \prime}(x)=2(1-x)^{-3} \\
& f^{(3)}(x)=3 \cdot 2 \cdot(1-x)^{-4} \\
& \vdots \\
& f^{(6)}(x)=k!(1-x)^{-(6+1)}
\end{aligned}
$$

$$
\begin{gathered}
T^{m} f(x)=\sum_{k=0}^{m-1} \frac{f^{(k)}(0)}{k!} x^{k} \\
T^{m} f(x)=\sum_{k=0}^{m-1} x^{k}
\end{gathered}
$$

Problem 2 (Taylor expansion)
Show that $\left|(1-x)^{-1}-e^{x}\right| \leq M x^{2}$ for some $M>0$ (where

$$
\begin{aligned}
& |x|<1) . \\
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \cdot(1-x)^{-1}=1+x+x^{2}+\cdots \\
& \begin{aligned}
(1-x)^{-1}-e^{x} & =0+0+x^{2}-\frac{1}{2} x^{2}+O\left(x^{3}\right) \\
& =\frac{1}{2} x^{2}+O\left(x^{3}\right)=O\left(x^{2}\right) . \quad(|x|<1)
\end{aligned}
\end{aligned}
$$

(Note that M depends on x : we can tate for example $M=\frac{1}{1-x}+\frac{1}{2}$. If we only considered $|x|<\delta<1$, then M could be chosen independently of x, take for example $\left.\frac{1}{1-8}+\frac{1}{2}\right)$.

Problem 3 (numerical differentiation)
Show that $\frac{u(t+h)-u(t-h)}{2 h}=u^{\prime}(x)+\mathcal{O}\left(h^{p}\right)$, and find p.

$$
\left.\begin{aligned}
& T^{a} u(t+h)=\sum_{k=0}^{m-1} \frac{u^{(6)}(t)}{k!} h^{k} \\
& \left.\begin{array}{l}
T^{m} u(t-h)=\sum_{k=0}^{n-1} \frac{u^{(h)}(t)}{6!}(-h)^{k} \\
\text { Ser pa telteren }: \frac{u(t+h)-u(t-h)}{2 h}: \\
k=0: u(t)-u(t)=0 \\
k=1: u^{\prime}(t) h+u^{\prime}(t) h=2 h u^{\prime}(t) \\
k=2: \frac{u^{\prime \prime}(t)}{2} h^{2}-\frac{u^{\prime \prime}(t)}{2} h^{2}=0 \\
k=3: \frac{2}{2} u^{(3)}(t) h^{3} \neq 0 .
\end{array} \right\rvert\,=\frac{0+2 h u^{\prime}(t)+0+\frac{2}{3!} u^{(3)}(t) h^{3}+0\left(h^{4}\right)}{2 h} \\
& \hline
\end{aligned} \right\rvert\,=u^{\prime}(t)+0\left(h^{2}\right) \quad(p=2) .
$$

Problem 4 (numerical differentiation)
Find a_{1}, a_{2} such that $\frac{a_{1} u(t+h)-a_{2} u(t-h / 2)}{h}=u^{\prime}(t)+\mathcal{O}\left(h^{1}\right)$.

$$
\begin{aligned}
& T^{m} u(t+h)=\sum_{k=0}^{m-1} \frac{u^{(k)}(t)}{k!} u^{k} \\
& T^{m} u\left(t-\frac{h}{2}\right)=\sum_{k=0}^{n-1} \frac{u^{(6)}(t)}{k!}\left(-\frac{h}{2}\right)^{k}
\end{aligned}
$$

$$
a_{1}=a_{2}=2 / 3
$$

sammenliguer lad

$$
\begin{aligned}
k=0: & a_{1} u(t)-a_{2} u(t) \Rightarrow a_{1}=a_{2}=a \\
k=1: & a u^{\prime}(t) h+\frac{h}{2} a u^{\prime}(t) \\
& =u^{\prime}(t) a h \frac{3}{2} \Rightarrow a=\frac{2}{3} . \\
k=2: & a \frac{u^{\prime \prime}(t)}{2} h^{2}-a \frac{u^{\prime \prime}(t)}{2} \frac{h^{2}}{4} \neq 0
\end{aligned}
$$

Problem 5 (numerical differentiation)
Show that $\frac{u(t+h)-2 u(t)+u(t-h)}{h^{2}}=u^{\prime \prime}(t)+\mathcal{O}\left(h^{2}\right)$.

$$
\begin{aligned}
& T^{\mu} u(t+h)=\sum_{k=0}^{a-1} \frac{u^{(6)}(t)^{h^{2}}}{k!} h^{k} \\
& T^{m} u(t-h)=\sum_{k=0}^{m-1} \frac{u^{(h)}(t)}{k!}(-h)^{k}
\end{aligned}
$$

Samsenligner lead:

$$
\begin{aligned}
& k=0: u(t)-2 u(t)+u(t)=0 \\
& k=1: u^{\prime}(t) h-u^{\prime}(t) h=0 \\
& 6=2: \frac{u^{\prime \prime}(t) h h^{2}+\frac{u^{\prime \prime}(t)}{2} h^{2}=u^{\prime \prime}(t) h^{2}}{2} \\
& k=3: \frac{u^{(3)}(t) h^{3}}{3!}-\frac{u^{(3)}(t) h^{3}}{3!}=0 \\
& k=4: \frac{u^{(4)}(t) h^{4}}{4!}+\frac{u^{(4)}(t) h^{4}}{4!} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{u(t+h)-2 u(t)+u(t-h)}{h^{2}} \\
= & \frac{0+0+u^{\prime \prime}(t) h^{2}+0\left(h^{4}\right)}{h^{2}} \\
= & u^{\prime \prime}(t)+O\left(h^{2}\right)
\end{aligned}
$$

Problem 6 (numerical solution of boundary value problem)
(1) Show that $u(x)=-\sin (2 \pi x) /\left(4 \pi^{2}\right)$ is a solution to the boundary value problem $\partial_{x}^{2} u=\sin (2 \pi x)$,

$$
x \in(0,1), u(0)=u(1)=\hat{0}
$$

(2) Set up a finite difference scheme approximation for this BVP using central differences. Use a uniform grid with step size $h=1 / N$, so that $x_{k}=k h, k=0, \ldots, N$.
(1)

$$
\begin{aligned}
& u(0)=\sin (0)=u(1)=\sin (2 \pi)=0 \text { ob! } \\
& \partial_{x} u(x)=\partial_{x}\left(-\frac{1}{4 \pi^{2}} \sin (2 a x)\right)=-\frac{1}{2 \pi} \cos (2 \pi x) \\
& \partial_{x}^{2} u(\alpha)=\partial_{x}\left(-\frac{1}{2 \pi} \cos (2 \pi x)\right)=\sin (2 \pi x) \text { or ! }
\end{aligned}
$$

