TMA4125 Matematikk 4 N

Exercise \#8

6. March 2023

Problem 1. (Finite difference method for the wave equation)
Consider the wave equation

$$
\begin{array}{rlrl}
u_{t t} & =9 u_{x x}, & -2 \leq x \leq 2, & t \geq 0 \\
u(-2, t) & =u(2, t)=0, & t \geq 0 \\
u(x, 0) & =f(x), \quad u_{t}(x, 0)=g(x), & -2 \leq x \leq 2
\end{array}
$$

a) Find the exact solutions of the wave equation for the following two sets of initial conditions:

- The conditions

$$
\begin{equation*}
f(x)=\sin \left(\frac{\pi x}{2}\right) \quad \text { and } \quad g(x)=0 \tag{2}
\end{equation*}
$$

- The conditions

$$
\begin{equation*}
f(x)=0 \quad \text { and } \quad g(x)=\pi \sin \left(\frac{\pi x}{2}\right) \tag{3}
\end{equation*}
$$

b) - Set up a finite difference scheme, using central differences for the second derivatives in both directions. Use step sizes h in space and k in the temporal direction. Notice that special care has to be taken for the first temporal step. The final scheme should be written in the form

$$
\begin{aligned}
U_{i}^{1} & =\cdots, & & i=1, \ldots, M-1, \\
U_{i}^{n+1} & =\cdots, & & i=1, \ldots, M-1,
\end{aligned} \quad n=1,2, \ldots,
$$

where the \cdots consist of given and/or previously computed values.
NB! Your solution should include an explanation on how the explicit scheme is obtained.

- Use the initial values (2) Let $h=1$ and $k=\frac{1}{3}$ and use the formulas above to find approximations to $u\left(x_{i}, \frac{1}{3}\right), i=1, \ldots, 3$ (by hand!).
c) Implement and test the scheme derived in point (b). A template for the implementation can be found in the Jupyternote PDE_wave_fdm.ipynb.

It is more interesting to study the animations of the simulations, however, for the hand-in, you are asked to plot the solutions for $t=0,0.4,1.2$ and 2 if nothing else is said.

- Use the initial values from (2). Let $h=0.1$ and $k=0.01$. Plot the solutions, and compare with the exact solution.

You may also like to try (but not hand in) with k just a tiny bit larger than 0.01 , and observe what happens in this case. You should observe instabilites.

The next bullets points are optional and should not be handed in

- Repeat the experiment above with the initial values given by (3).
- Use the initial values (2), but let now the wave speed c be given by

$$
c(x)= \begin{cases}1 & \text { for } x \leq 0 \\ 2 & \text { for } x>0\end{cases}
$$

Plot the solution for $t=0,0.4,1.2$ and 2 .

Problem 2.

Use D'Alembert's method to find the solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}
$$

for $t>0$ and all $x \in \mathbb{R}$ with initial conditions

$$
u(x, 0)=\sin x \quad \text { and } \quad \frac{\partial u(x, 0)}{\partial t}=\mathrm{e}^{-x / 4}
$$

Problem 3. (1D Heat Equation)
Solve the differential equation

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u-\frac{1}{4} \frac{\partial^{2}}{\partial x^{2}} u=0 \\
u(0, t)=u\left(\frac{\pi}{2}, t\right)=0 \\
u(x, 0)=2 x\left(x-\frac{\pi}{2}\right)
\end{array}\right.
$$

for $x \in\left[0, \frac{\pi}{2}\right]$ and $t \in[0, \infty]$.

The next exercises are optional and should not be handed in!

Problem 4.

Use D'Alembert's method to find the solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

for $t>0$ and all $x \in \mathbb{R}$ with initial conditions

$$
u(x, 0)=\cos x \quad \text { and } \quad \frac{\partial u(x, 0)}{\partial t}=x e^{-x^{2}}
$$

Problem 5.

Vibrations in a stiff metal rod can be roughly described by the fourth order PDE

$$
\frac{\partial^{2} u}{\partial t^{2}}=-c^{2} \frac{\partial^{4} u}{\partial x^{4}}
$$

We assume now that the metal rod is simply supported at both ends at $x=0$ and $x=\pi$, and has zero curvature at both ends. This corresponds to the boundary conditions

$$
u(0, t)=u(\pi, t)=0 \quad \text { and } \quad \frac{\partial^{2} u}{\partial x^{2}}(0, t)=\frac{\partial^{2} u}{\partial x^{2}}(\pi, t)=0
$$

for all $t>0$.
a) We use the idea of separation of variables and consider solutions of the form $u(x, t)=$ $F(x) G(t)$. Derive ordinary differential equations for the functions F and G.
b) Verify that all functions of the form

$$
F(x)=A \sin (\beta x)+B \cos (\beta x)+C \sinh (\beta x)+D \cosh (\beta x)
$$

with $\beta>0$ satisfy the ODE for F derived in the previous point. For which values of $\beta>0$ are the boundary conditions satisfied? What are the corresponding solutions of the equation for G ?

