TMA4125 Matematikk 4N

Numerics for Initial Value Problems

Ronny Bergmann
Department of Mathematical Sciences, NTNU.
March 30, 2023

Motivation

Similar to Integration: Only a very limited number of ODEs can be solved analytically.

Example. A simple pendulum

$$
\begin{cases}\theta^{\prime \prime}(t) & =-\frac{g}{L} \sin (\theta(t)) \\ \theta(0) & =\theta_{0} \\ \theta^{\prime}(0) & =0\end{cases}
$$

has no analytical solution!
Approximate for small $\theta: \sin \theta \approx \theta$
\Rightarrow We can solve the approximate ODE

$$
\theta^{\prime \prime}=-\frac{g}{L} \theta \quad \Leftrightarrow \quad \theta(t)=\theta_{0} \cos \left(\sqrt{\frac{g}{L}} t\right), \quad \text { period } T=\frac{2 \pi}{\sqrt{g} L}=2 \pi \sqrt{\frac{L}{g}}
$$

First Order ODEs

A scalar ODE of first order is an equation of the form

$$
y^{\prime}(t)=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

where $y^{\prime}(t)=\frac{\mathrm{d} y}{\mathrm{~d} t}$ and $y\left(t_{0}\right)=y_{0}$ is required for uniqueness.
These ODEs are called initial value problems (IVP).
We are interested in the solution $y(t)$ for $t>t_{0}$ If f depends linearly on y it is called linear.

Examples.

- $y^{\prime}(t)=3 y(t), \quad f(t, y)=3 y$, linear
- $y^{\prime}(t)=-2 t y(t), \quad f(t, y)=-2 t y$, linear
- $y^{\prime}(t)=t^{3}-2 t^{2} y(t), \quad f(t, y)=t^{3}-2 t^{2} y$, linear
- $y^{\prime}(t)=1-(y(t))^{2}, \quad f(t, y)=1-y^{2}$, nonlinear

Systems of ODEs

A System of ODEs is given by

$$
\begin{array}{rlr}
y_{1}^{\prime} & =f_{1}\left(t, y_{1}, y_{2}, \ldots, y_{m}\right), & y_{1}\left(t_{0}\right)=y_{1,0} \\
y_{2}^{\prime} & =f_{2}\left(t, y_{1}, y_{2}, \ldots, y_{m}\right), & y_{2}\left(t_{0}\right)=y_{2,0} \\
\vdots & & \\
y_{m}^{\prime} & =f_{m}\left(t, y_{1}, y_{2}, \ldots, y_{m}\right), & y_{m}\left(t_{0}\right)=y_{m, 0}
\end{array}
$$

or more compactly

$$
\mathbf{y}^{\prime}(t)=\mathbf{f}(t, \mathbf{y}(t)), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
$$

with

$$
\mathbf{y}(t)=\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{m}(t)
\end{array}\right), \quad \mathbf{f}(t, \mathbf{y})=\left(\begin{array}{c}
f_{1}\left(t, y_{1}, y_{2}, \ldots, y_{m}\right) \\
f_{2}\left(t, y_{1}, y_{2}, \ldots, y_{m}\right) \\
\vdots \\
f_{m}\left(t, y_{1}, y_{2}, \ldots, y_{m}\right)
\end{array}\right), \quad \mathbf{y}_{0}=\left(\begin{array}{c}
y_{1,0} \\
y_{2,0} \\
\vdots \\
y_{m, 0}
\end{array}\right)
$$

Example: Preditor-Prey or Lotka-Volterra-Model

We describe 2 species

- $y_{1}(t)$ is the population of some prey (maybe rabbits, or small fish)
- $y_{2}(t)$ is the population of some predator (maybe foxes or sharks)

Then we have a (simplified) model of their interaction as

$$
\begin{aligned}
y_{1}^{\prime}(t) & =\alpha y_{1}(t)-\beta y_{1}(t) y_{2}(t) \\
y_{2}^{\prime}(t) & =\delta y_{1}(t) y_{2}(t)-\gamma y_{2}(t)
\end{aligned}
$$

where $\alpha, \beta, \delta, \gamma$ are parameters describing the interaction. Or in short

$$
\mathbf{y}^{\prime}(t)=\mathbf{f}(t, \mathbf{y}(t)) \quad \text { with } \quad \mathbf{f}(t, \mathbf{y})=\binom{\alpha y_{1}-\beta y_{1} y_{2}}{\delta y_{1} y_{2}-\gamma y_{2}}
$$

Notes.

We need some initial populations \mathbf{y}_{0} and some initial time t_{0} But. The right hand side does not depend on t

Autonomous ODEs

A (system of) $\operatorname{ODE}(\mathrm{s})$ is called autonomous if the function f only depends on y and not (directy) on t

- $y^{\prime}(t)=3 y(t), \quad f(t, y)=3 y$, autonomous, linear
- $y^{\prime}(t)=-2 t y(t), \quad f(t, y)=-2 t y$, non-autonomous, linear
- $y^{\prime}(t)=1-(y(t))^{2}, \quad f(t, y)=1-y^{2}$, autonomous, nonlinear

A trick. A system of ODEs, can be made autonomous introducing a $m+1$ st variable

$$
y_{m+1}^{\prime}=1, \quad y_{m+1}\left(t_{0}\right)=t_{0}
$$

and replacing all occurrences of t in \mathbf{f} by y_{m+1}.

Higher Order ODEs

An initial value problem (IVP) for an ODE of order m is given by

$$
\begin{aligned}
u^{(m)} & =f\left(t, u, u^{\prime}, \ldots, u^{(m-1)}\right), \\
u\left(t_{0}\right) & =u_{0} \\
u^{\prime}\left(t_{0}\right) & =u_{0}^{\prime} \\
& \vdots \\
u^{(m-1)}\left(t_{0}\right) & =u_{0}^{(m-1)}
\end{aligned}
$$

where $u^{(1)}=u^{\prime}$ and $u^{(m+1)}=\frac{\mathrm{d} u^{(m)}}{\mathrm{d} t}$ for $m>0$ denotes the $(m+1)$ st derivative.

Rewrite.

We can rewrite a higher order ODE into a system of first-order ODEs.

Higher order ODEs to System of ODEs

Introduce. New variables:
$y_{1}(t)=u(t), \quad y_{2}(t)=u^{\prime}(t), \quad y_{3}(t)=u^{(2)}(t), \ldots, y_{m}(t)=u^{(m-1)}(t)$.
We observe. Taking the derivative $y_{i}^{\prime}=\left(u^{(i+1)}\right)^{\prime}=u^{(i+2)}=y_{i+1}$, $i=1, \ldots, m-1$.
\Rightarrow We obtain the following first order System of ODEs

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=y_{3} \\
& \vdots \\
& y_{m-1}^{\prime}=y_{m} \\
& y_{m}^{\prime}\left.=f\left(t, y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right)\right)
\end{aligned}
$$

Example. Van der Pol's Equation

Van der Pol's equation is a second order differential equation given by

$$
u^{\prime \prime}=\mu\left(1-u^{2}\right) u^{\prime}-u, \quad u(0)=u_{0}, \quad u^{\prime}(0)=u_{0}^{\prime}
$$

where $\mu>0$.
Common choices. $u_{0}=2, u_{0}^{\prime}=0$.

System of First Order ODEs

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{2} & y_{1}(0)=u_{0} \\
y_{2}^{\prime}=\mu\left(1-y_{1}^{2}\right) y_{2}-y_{1} & y_{2}(0)=u_{0}^{\prime}
\end{array}
$$

Numerical Methods

Terms and Notation

Focus. Scalar ODEs, but can be directly applied to systems of ODEs, too.
Approach. We will take timesteps $t_{0}, t_{1}, t_{2}, \ldots$ introduce/compute the approximations $y_{n} \approx y\left(t_{n}\right)$.
\Rightarrow for "errors" we consider $\left|y_{n}-y\left(t_{n}\right)\right|$!
Methods. We will only consider one-step methods.
Given

- an ODE (i.e. a right hand side f)
- initial values $\left(t_{0}, y_{0}\right)$
- a step size h
\Rightarrow We compute a first step $y_{1} \approx y\left(t_{1}\right)$ with $t_{1}=t_{0}+h$
\Rightarrow based on $\left(t_{1}, y_{1}\right)$: compute $y_{2} \approx y\left(t_{2}\right)$ with $t_{2}=t_{1}+h$
- ... and so on until a final time $t_{\text {end }}$ is reached.

One-Step Methods and Beyond

One-Step Methods are only "allowed" to use the information from the previous step,
i. e. the approximation y_{k+1} does not depend on y_{k-1}, y_{k-2}, \ldots

Main alternative. multi-step methods are allowed to take previous values into account as well.

Summary. We numerically compute an approximation to y at discrete time points $t_{n}, n=0,1, \ldots$,

Be careful! We often compare

- $y\left(t_{n}\right)$ the (analytical) solution at t_{n}
- y_{n} the nth step of the numerical methods (which only approximates $y\left(t_{n}\right)$)

Euler's method

A first algorithm to solve $\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y})$ is given as ${ }^{1}$

Euler's method

1. Given / Input: A function $\mathbf{f}(t, \mathbf{y})$ and initial value $\left(t_{0}, \mathbf{y}_{0}\right)$
2. Choose a step size h
3. For $n=0,1,2 \ldots$

- $\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$
- $t_{n+1}=t_{n}+h$

Let's look at two examples in Python.

[^0]
Trapezoidal method

Idea. Let's integrate the $\operatorname{ODE} \mathbf{y}^{\prime}(t)=\mathbf{f}(t, y)$ from t_{n} to t_{n+1}. And use the trapezoidal rule to approximate the integral

The update for the Trapezoidal rule reads

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{2}\left(\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)+\mathbf{f}\left(t_{n+1}, \mathbf{y}_{n+1}\right)\right) .
$$

This is a so-called implicit method, since \mathbf{y}_{n+1} appears on boths sides and is hence only implicitly given.
\Rightarrow We would have to solve for \mathbf{y}_{n+1} in every iteration.

Heun's method

Remedy. Instead of solving the nonlinear equation for $\$ \mathbf{y}_{n+1}$, first approximate/replace \mathbf{y}_{n+1} on the right by applying a step from Euler's method. We obtain

Heun's method.

$$
\begin{aligned}
& \mathbf{u}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\
& \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{2}\left(\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)+\mathbf{f}\left(t_{n+1}, \mathbf{u}_{n+1}\right)\right) .
\end{aligned}
$$

This is more commonly written (emphasizing reusing terms) as

$$
\begin{aligned}
\mathbf{k}_{1} & =\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right), \\
\mathbf{k}_{2} & =\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}+h \mathbf{k}_{1}\right), \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+\frac{h}{2}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) .
\end{aligned}
$$

Notation Interlude: Increment function Φ

We saw that the one-step methods can be written as

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h_{n} \boldsymbol{\Phi}\left(t_{n}, \mathbf{y}_{n}, \mathbf{y}_{n+1}, h_{n}\right)
$$

where for us $h_{n}=h$ does not change during the iterations (but it indeed could), and
The function $\boldsymbol{\Phi}$ is called increment function.

A method is called

- explicit if $\boldsymbol{\Phi}$ does not depend on \mathbf{y}_{n+1}
- implicit if $\boldsymbol{\Phi}$ does depend on \mathbf{y}_{n+1}

Examples. Are the following implicit or explicit?

- Euler: $\boldsymbol{\Phi}\left(t_{n}, \mathbf{y}_{n}, \mathbf{y}_{n+1}, h\right)=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$
- Trapezoidal: $\boldsymbol{\Phi}\left(t_{n}, \mathbf{y}_{n}, \mathbf{y}_{n+1}, h\right)=\frac{1}{2}\left(\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)+\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n+1}\right)\right)$
- Heun: $\mathbf{\Phi}\left(t_{n}, \mathbf{y}_{n}, \mathbf{y}_{n+1}, h\right)=\frac{1}{2}\left(\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)+\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}+h \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)\right)\right)$

NTNU

Runge-Kutta

Runge-Kutta-Method

Definition. An s-stage Runge-Kutta method is given by

$$
\begin{aligned}
\mathbf{k}_{i} & =\mathbf{f}\left(t_{n}+c_{i} h, \mathbf{y}_{n}+h \sum_{j=1}^{s} a_{i j} \mathbf{k}_{j}\right), \quad i=1,2, \ldots, s \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+h \sum_{i=1}^{s} b_{i} \mathbf{k}_{i}
\end{aligned}
$$

Defined by its coefficients, which are given in a Butcher tableau

c_{1}	a_{11}	a_{12}	\cdots	$a_{1 s}$
c_{2}	a_{21}	a_{22}	\cdots	$a_{1 s}$
\vdots	\vdots	\vdots		\vdots
c_{s}	$a_{s 1}$	$a_{s 2}$	\cdots	$a_{s s}$
	b_{1}	b_{2}	\cdots	b_{s}

$$
\text { with } c_{i}=\sum_{j=1}^{s} a_{i j}, \quad i=1, \ldots, s
$$

\Rightarrow THe method is explicit if $a_{i j}=0$ for $j \geq i$ (diagonal and above).

Examples of Runge-Kutta

Euler.

0	0
	1

Heun.

0	0	0
1	1	0
	$\frac{1}{2}$	$\frac{1}{2}$

Trapezoidal.

0	0	0
1	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{1}{2}$	$\frac{1}{2}$

RK4.				
0	0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	0	0
1	0	0	1	0
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

NTNU

Theoretical Results

Motivation.

We want to be able to tell

- When does a solution exist?
- When is a solution unique?
- How large is the error one step introduces?
- How large can the global (overall) error get?
- How does the error behave depending on the step size h ?

In other words: While we do not have the exact solution $y(t)$, we still want to be able to say how close we are to that, so what the error is in our computations, and how much is needed to improve/reduce it.

Lipschitz condition

Definition. A function $\mathbf{f}: \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ satisfies a Lipschitz condition with respect to y on a domain $(a, b) \times D$ where $D \subset \mathbb{R}^{m}$ if there exists a constant L such that

$$
\|\mathbf{f}(t, \mathbf{y})-\mathbf{f}(t, \mathbf{z})\| \leq L\|\mathbf{y}-\mathbf{z}\|, \quad \text { for all } \quad t \in(a, b) \text { and } \mathbf{y}, \mathbf{z} \in D
$$

holds.
The constant L is called the Lipschitz constant.

Remark. \mathbf{f} is Lipschitz if

- if $\frac{\partial f_{i}}{\partial y_{j}}, i, j=1, \ldots, m$ are continuous and bounded on $(a, b) \times D$
- D is open and convex

Existence of solutions

Theorem (Existence and uniqueness of a solution)

Consider the initial value problem

$$
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
$$

with given initial values $t_{0} \in(a, b)$ and $\mathbf{y}_{0} \in D$.
If

- $\mathbf{f}(t, \mathbf{y})$ is continuous in $(a, b) \times D$
- $\mathbf{f}(t, \mathbf{y})$ satisfies the Lipschitz condition with respect to \mathbf{y} in $(a, b) \times D$, then the ODE has one and only one solution in $(a, b) \times D$.

In the following we assume that our ODE under consideration fulfils this.

Error Analysis

When we aolve an ODE e.g. with Euler's method on $\left[t_{0}, t_{\text {end }}\right]$ we can ask ourselves

- How will the error at the end $t_{\text {end }}$ (or any point in between) depend on the number of steps?
- phrased differently: Choose N and set $h=\frac{t_{\text {end }}-t_{0}}{N}$. Then we get $t_{N}=t_{\text {end }}$.
What can we say about the error $e_{N}=y\left(t_{\text {end }}-y_{N}\right)$?

In the following we will just consider the scalar equation $y^{\prime}=f(t, y)$. The results also hold for systems of equations.

Local and Global Error

We will consider two types of errors:

- Local Truncation Error (LTE) d_{n+1} denotes the error made in one single step starting from the exact/true point $\left(t_{n}, y\left(t_{n}\right)\right)$
- Global error e_{n} denotes the difference between the exact $\left(y\left(t_{n}\right)\right)$ and numerical $\left(y_{n}\right)$ solution after n steps:
$e_{n}=y\left(t_{n}\right)-y_{n}$

Goals.

- find an expression for d_{n}
- look at the relation between local errors and the global error
- find an upper bound for the global error

Local Truncation Error for Euler's method

 Investigating the error in one step for an ODE $y^{\prime}=f(t, y)$. From the Taylor expansion we get$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)+\frac{1}{2} y^{\prime \prime}(\xi), \quad t_{n}<\xi<t_{n}+h
$$

Eulers method starting from $\left(t_{n}, y\left(t_{n} T\right)\right)$ yields

$$
y\left(t_{n}+h\right) \approx y\left(t_{n}\right)+h f\left(t_{n}, y\left(t_{n}\right)\right)=y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)
$$

\Rightarrow The local truncation error for Euler's method: their difference

$$
d_{n+1}=y\left(t_{n}+h\right)-\left(y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)\right)=\frac{1}{2} h^{2} y^{\prime \prime}(\xi), \quad \xi \in\left(t_{m}, t_{n}+h\right)
$$

We can observe two things

- with a bound C for $y^{\prime \prime}(\xi)$ yields that $d_{n+1}=\mathcal{O}\left(h^{2}\right)$
- see the error of Euler's method in:

$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h\left(f\left(t_{n}, y_{n}\right)\right)+d_{n+1}
$$

Global Error for Euler's Scheme

Summary.

We have the exact step (inculding d_{n+1}) and the numerical scheme

$$
\begin{aligned}
y\left(t_{n}+h\right) & =y\left(t_{n}\right)+h f\left(t_{n}, y\left(t_{n}\right)\right)+d_{n+1} \\
y_{n+1} & =y_{n}+h f\left(t_{n}, y_{n}\right)
\end{aligned}
$$

Goal. Using

- $e_{n}=y\left(t_{n}\right)-y_{n}$
- an upper bound for $f_{y}=\frac{\partial f}{\partial y}$ as $\left|f_{y}(t, y)\right| \leq L$ (a Lipschitz constant)
- an upper bound for $\left|y^{\prime \prime}(t)\right| \leq 2 D$
find

1. an upper bound for $\left|e_{n+1}\right|$
2. by iteration an upper bound for $\left|e_{N}\right|$
\Rightarrow We want to say something about decreasing h or increasing N and how e_{N} behaves then.

Global Error for Euler's Scheme - Result

We obtain

$$
\left|y\left(t_{\text {end }}\right)-y_{N}\right|=\left|e_{N}\right| \leq D h \leq C h,
$$

where $C=\frac{\mathrm{e}^{L\left(t_{\text {end }}-t_{0}\right)}-1}{L} D$ depends on

- the length of our interval $t_{\text {end }}-t_{0}$
- certain properties of y (the D) and f (the L)
! but not on N or h !
We especially get

$$
\lim _{N \rightarrow \infty}\left|e_{N}\right|=0
$$

Remark.

- We got locally $d_{n+1}=\mathcal{O}\left(h^{2}\right)$
- We got globally $e_{N}=\mathcal{O}(h)$

Roughly speaking because it takes N (in order of $\frac{1}{N}$) steps (with local errors) to "reach" $t_{\text {end }}$.

Local Truncation Error \& Consistency

For a Numerical method to solve the ODE $y^{\prime}=f(t, y)$ we consider the Increment function Φ (again), that is, the function that describes our numerical method as

$$
y_{n+1}=y_{n}+h \Phi\left(t_{n}, y_{n}, h\right)
$$

then the local truncation error reads as

$$
d_{n+1}=y\left(t_{n}+h\right)-\left(y\left(t_{n}\right)+h \Phi\left(t_{n}, y\left(t_{n}\right), h\right)\right)
$$

Definition (Consistency)

A numerical method is called consistent if

$$
\lim _{h \rightarrow 0} \frac{d_{n+1}}{h}=0, \quad \text { for all } n=0,1, \ldots, N, N=\left\lceil\frac{b-a}{h}\right\rceil
$$

It is called consistent of order p if $d_{n+1}=\mathcal{O}\left(h^{p+1}\right)$.

Remark on Consistency

For systems of equations

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \boldsymbol{\Phi}\left(t_{n}, \mathbf{y}_{n}, h\right)
$$

by considering the absolute norm of the LTE, i. e. if

$$
\|\mathbf{y}(t+h)-(\mathbf{y}(t)+h \mathbf{\Phi}(t, \mathbf{y}(t), h))\| \leq D h^{p+1}
$$

then numerical method for the system of ODEs is consistent of order p.

Convergence

Theorem (Convergence of one-step methods)
Assume that there exist positive constants M and D such that the increment function $\mathbf{\Phi}$ satisfies

$$
\|\mathbf{\Phi}(t, \mathbf{y}, h)-\mathbf{\Phi}(t, \mathbf{z}, h)\| \leq M\|\mathbf{y}-\mathbf{z}\|
$$

and the method is consistent of oder p, that is the local truncation error satisfies

$$
\|\mathbf{y}(t+h)-(\mathbf{y}(t)+h \mathbf{\Phi}(t, \mathbf{y}(t), h))\| \leq D h^{p+1}
$$

for all t, y and z in a neighbourhood of the solution. In that case, the global error satisfies

$$
\left\|\mathbf{e}_{N}\right\|=\left\|\mathbf{y}\left(t_{\mathrm{end}}\right)-\mathbf{y}_{N}\right\| \leq C h^{p}, \quad \text { with } C=\frac{\mathrm{e}^{M\left(t_{\mathrm{end}}-t_{0}\right)}-1}{M} D
$$

The method is then called (convergent) of order p.

Remarks on Convergence

We saw. Consistency (of order p) and Lipschitz condition \Rightarrow Convergence (of oder p).

Example. For Euler's method: $\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$
$\Rightarrow \boldsymbol{\Phi}(t, \mathbf{y}, h)=\mathbf{f}(t, \mathbf{y})$.
$\Rightarrow L=M$ is the same constant
For Runge-Kutta Methods. The corresponding increment function $\mathbf{\Phi}$ is maybe complicated a constant M as required in the Theorem always exists.

Convergence Order for Runge-Kutta

For Runge-Kutta methods, one can prove:
The method is of order p with $p \leq 4$ if all of the conditions in the table on the left up to and including p are fulfilled. (all sums run from 1 to s.)

Remark.

Similar conditions for higher order exist, but get a bit more complicated.

Example. Let's check Heun's method.

p	conditions
1	$\sum_{i} b_{i}=1$
2	$\sum_{i} b_{i} c_{i}=1 / 2$
3	$\sum_{i} b_{i} c_{i}^{2}=1 / 3$
	$\sum_{i, j} b_{i} a_{i j} c_{j}=1 / 6$
4	$\sum_{i} b_{i} c_{i}^{3}=1 / 4$
	$\sum_{i, j} b_{i} c_{i} a_{i j} c_{j}=1 / 8$
	$\sum_{i, j} b_{i} a_{i j} c_{j}^{2}=1 / 12$
	$\sum_{i, j, k} b_{i} a_{i j} a_{j k} c_{k}=1 / 24$

Summary (including systems of Equations) Notation / Definitions.

- the ODE: $\quad \mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y})$
- the exact solution through $\left(t^{*}, \mathbf{y}^{*}\right): \quad \mathbf{y}\left(t, t^{*}, \mathbf{y}^{*}\right)$
- the exact solution of the ODE with initial values t_{0}, \mathbf{y}_{0} :

$$
\mathbf{y}(t)=\mathbf{y}\left(t ; t_{0}, \mathbf{y}_{0}\right)
$$

- one step of the (explicit) method (increment function $\boldsymbol{\Phi}$):

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{\Phi}\left(t_{n}, \mathbf{y}_{\mathbf{n}}, h\right)
$$

Error Concepts.

Let $\boldsymbol{\Phi}$ represent a method of order p and $\hat{\boldsymbol{\Phi}}$ a method of order $p+1$.

- local truncation error (LTE) (comparing exact solution to one step "from there"):

$$
\mathbf{d}_{n+1}=\mathbf{y}\left(t_{n}+h ; t_{n}, \mathbf{y}\left(t_{n}\right)\right)-\left(\mathbf{y}\left(t_{n}\right)+h \mathbf{\Phi}\left(t_{n}, \mathbf{y}\left(t_{n}\right), h\right)\right)
$$

- local error: $\mathbf{l}_{n+1}=\mathbf{y}\left(t_{n}+h ; t_{n}, \mathbf{y}_{n}\right)-\left(\mathbf{y}_{n}+h \mathbf{\Phi}\left(t_{n}, \mathbf{y}_{n}, h\right)\right)$
- the global error: $\mathbf{e}_{n}=\mathbf{y}\left(t_{n}\right)-\mathbf{y}_{n}$

ם

Error Estimates \& Adaptivity

Motivation

In our numerical tests we saw that the step size h has to be chosen

- if it is too large \Rightarrow too inexact results in \mathbf{y}_{n}
- if it is too small \Rightarrow too much computational time or memory usage

Approaches.

1. control the global error $\mathbf{e}_{n}=\mathbf{y}\left(t_{n}\right)-\mathbf{y}_{n}$ this is quite difficult and beyond the scope of this lecture
2. control the local error $\mathbf{l}_{n+1}:=\mathbf{y}\left(t_{n+1} ; t_{n}, \mathbf{y}_{n}\right)-\mathbf{y}_{n+1}$ where

- we "start from" $\left(t_{n}, \mathbf{y}_{n}\right)$: We consider the exact solution $\mathbf{y}\left(t ; t_{n}, \mathbf{y}_{n}\right)$ but running through $\left(t_{n}, \mathbf{y}_{n}\right)$.
- compared to \mathbf{d}_{n+1} we have hence a "different starting point" $\mathbf{y}_{\mathbf{n}}$ and not $\mathbf{y}\left(t_{n}\right)$!

Approximating the local error

Recap. We saw that for the convergence order we needed power serieses in h.

Now since we do not have the actual solution $\mathbf{y}(t)$, let's take two methods, where one is more exact. For both we start from our previous point $\left(t_{n}, \mathbf{y}_{n}\right)$:

$$
\begin{aligned}
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+h \boldsymbol{\Phi}\left(t_{n}, \mathbf{y}_{n}, h\right) \\
\hat{\mathbf{y}}_{n+1} & =\mathbf{y}_{n}+h \hat{\boldsymbol{\Phi}}\left(t_{n}, \mathbf{y}_{n}, h\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ either derived via Taylor expansion or forward differences

