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Motivation
Similar to Integration: Only a very limited number of ODEs can be
solved analytically.

Example. A simple pendulum
θ′′(t) = − g

L sin(θ(t))

θ(0) = θ0

θ′(0) = 0

has no analytical solution!

Approximate for small θ: sin θ ≈ θ
⇒We can solve the approximate ODE

θ′′ = − g

L
θ ⇔ θ(t) = θ0 cos

(√ g
L t
)
, period T =

2π
√
gL

= 2π

√
L

g
.
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First Order ODEs
A scalar ODE of first order is an equation of the form

y′(t) = f(t, y(t)), y(t0) = y0

where y′(t) = dy
dt and y(t0) = y0 is required for uniqueness.

These ODEs are called initial value problems (IVP).
We are interested in the solution y(t) for t > t0
If f depends linearly on y it is called linear.

Examples.
▶ y′(t) = 3y(t), f(t, y) = 3y, linear
▶ y′(t) = −2ty(t), f(t, y) = −2ty, linear
▶ y′(t) = t3 − 2t2y(t), f(t, y) = t3 − 2t2y, linear
▶ y′(t) = 1− (y(t))2, f(t, y) = 1− y2, nonlinear
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Systems of ODEs
A System of ODEs is given by

y′1 = f1(t, y1, y2, . . . , ym), y1(t0) = y1,0

y′2 = f2(t, y1, y2, . . . , ym), y2(t0) = y2,0

...
y′m = fm(t, y1, y2, . . . , ym), ym(t0) = ym,0

or more compactly

y′(t) = f(t,y(t)), y(t0) = y0

with

y(t) =


y1(t)
y2(t)
...

ym(t)

 , f(t,y) =


f1(t, y1, y2, . . . , ym)
f2(t, y1, y2, . . . , ym)

...
fm(t, y1, y2, . . . , ym)

 , y0 =


y1,0
y2,0
...

ym,0


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Example: Preditor-Prey or Lotka-Volterra-Model
We describe 2 species
▶ y1(t) is the population of some prey (maybe rabbits, or small fish)
▶ y2(t) is the population of some predator (maybe foxes or sharks)

Then we have a (simplified) model of their interaction as

y′1(t) = αy1(t)− βy1(t)y2(t)

y′2(t) = δy1(t)y2(t)− γy2(t)

where α, β, δ, γ are parameters describing the interaction. Or in short

y′(t) = f(t,y(t)) with f(t,y) =

(
αy1 − βy1y2
δy1y2 − γy2

)
Notes.
We need some initial populations y0 and some initial time t0
But. The right hand side does not depend on t



6

Autonomous ODEs

A (system of) ODE(s) is called autonomous if the function f only
depends on y and not (directy) on t

▶ y′(t) = 3y(t), f(t, y) = 3y, autonomous, linear
▶ y′(t) = −2ty(t), f(t, y) = −2ty, non-autonomous, linear
▶ y′(t) = 1− (y(t))2, f(t, y) = 1− y2, autonomous, nonlinear

A trick. A system of ODEs, can be made autonomous introducing a
m+ 1st variable

y′m+1 = 1, ym+1(t0) = t0

and replacing all occurrences of t in f by ym+1.
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Higher Order ODEs

An initial value problem (IVP) for an ODE of orderm is given by

u(m) = f(t, u, u′, . . . , u(m−1)),

u(t0) = u0,

u′(t0) = u′0,

...

u(m−1)(t0) = u
(m−1)
0

where u(1) = u′ and u(m+1) = du(m)

dt form > 0 denotes the (m+ 1)st
derivative.

Rewrite.
We can rewrite a higher order ODE into a system of first-order ODEs.
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Higher order ODEs to System of ODEs

Introduce. New variables:
y1(t) = u(t), y2(t) = u′(t), y3(t) = u(2)(t),. . . , ym(t) = u(m−1)(t).

We observe. Taking the derivative y′i = (u(i+1))′ = u(i+2) = yi+1,
i = 1, . . . ,m− 1.
⇒We obtain the following first order System of ODEs

y′1 = y2

y′2 = y3

...
y′m−1 = ym

y′m = f(t, y1, y2, y3, . . . , ym))
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Example. Van der Pol’s Equation

Van der Pol’s equation is a second order differential equation given by

u′′ = µ(1− u2)u′ − u, u(0) = u0, u′(0) = u′0,

where µ > 0.
Common choices. u0 = 2, u′0 = 0.

System of First Order ODEs

y′1 = y2 y1(0) = u0

y′2 = µ(1− y21)y2 − y1 y2(0) = u′0
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Terms and Notation
Focus. Scalar ODEs, but can be directly applied to systems of ODEs, too.

Approach. We will take timesteps t0, t1, t2, . . .
introduce/compute the approximations yn ≈ y(tn).
⇒ for “errors” we consider |yn − y(tn)|!

Methods. We will only consider one-step methods.
Given
▶ an ODE (i.e. a right hand side f )
▶ initial values (t0, y0)
▶ a step size h

⇒ We compute a first step y1 ≈ y(t1) with t1 = t0 + h

⇒ based on (t1, y1): compute y2 ≈ y(t2) with t2 = t1 + h

▶ ... and so on until a final time tend is reached.
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One-Step Methods and Beyond
One-Step Methods are only “allowed” to use the information from the
previous step,
i. e. the approximation yk+1 does not depend on yk−1, yk−2, ...

Main alternative. multi-step methods are allowed to take previous
values into account as well.

Summary. We numerically compute an approximation to y at discrete
time points tn, n = 0, 1, . . . ,

Be careful! We often compare

▶ y(tn) the (analytical) solution at tn
▶ yn the nth step of the numerical methods (which only

approximates y(tn))
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Euler’s method

A first algorithm to solve y′ = f(t,y) is given as1

Euler’s method

1. Given / Input: A function f(t,y) and initial value (t0,y0)

2. Choose a step size h

3. For n = 0, 1, 2 . . .
▶ yn+1 = yn + hf(tn,yn)
▶ tn+1 = tn + h

Let’s look at two examples in Python.

1either derived via Taylor expansion or forward differences
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Trapezoidal method

Idea. Let’s integrate the ODE y′(t) = f(t, y) from tn to tn+1.
And use the trapezoidal rule to approximate the integral

The update for the Trapezoidal rule reads

yn+1 = yn +
h

2

(
f(tn,yn) + f(tn+1,yn+1)

)
.

This is a so-called implicit method, since yn+1 appears on boths sides
and is hence only implicitly given.
⇒We would have to solve for yn+1 in every iteration.
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Heun’s method
Remedy. Instead of solving the nonlinear equation for $yn+1,
first approximate/replace yn+1 on the right
by applying a step from Euler’s method. We obtain

Heun’s method.

un+1 = yn + hf(tn,yn)

yn+1 = yn +
h

2

(
f(tn,yn) + f(tn+1,un+1)

)
.

This is more commonly written (emphasizing reusing terms) as

k1 = f(tn,yn),

k2 = f(tn + h,yn + hk1),

yn+1 = yn +
h

2

(
k1 + k2

)
.
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Notation Interlude: Increment function Φ
We saw that the one-step methods can be written as

yn+1 = yn + hnΦ(tn,yn,yn+1, hn),

where for us hn = h does not change during the iterations (but it indeed
could), and
The function Φ is called increment function.

A method is called
▶ explicit if Φ does not depend on yn+1

▶ implicit if Φ does depend on yn+1

Examples. Are the following implicit or explicit?
▶ Euler: Φ(tn,yn,yn+1, h) = f(tn,yn)

▶ Trapezoidal: Φ(tn,yn,yn+1, h) =
1
2

(
f(tn,yn) + f(tn + h,yn+1)

)
▶ Heun: Φ(tn,yn,yn+1, h) =

1
2

(
f(tn,yn) + f(tn + h,yn + hf(tn,yn))

)
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Runge-Kutta-Method
Definition. An s-stage Runge-Kutta method is given by

ki = f(tn + cih, yn + h

s∑
j=1

aijkj), i = 1, 2, . . . , s

yn+1 = yn + h

s∑
i=1

biki

Defined by its coefficients, which are given in a Butcher tableau

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

with ci =

s∑
j=1

aij , i = 1, . . . , s.

⇒ THe method is explicit if aij = 0 for j ≥ i (diagonal and above).
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Examples of Runge-Kutta
Euler.
0 0

1

Heun.
0 0 0

1 1 0
1
2

1
2

Trapezoidal.
0 0 0

1 1
2

1
2

1
2

1
2

RK4.
0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6
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Motivation.

We want to be able to tell

▶ When does a solution exist?
▶ When is a solution unique?
▶ How large is the error one step introduces?
▶ How large can the global (overall) error get?
▶ How does the error behave depending on the step size h?

In other words: While we do not have the exact solution y(t),
we still want to be able to say how close we are to that,
so what the error is in our computations,
and how much is needed to improve/reduce it.
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Lipschitz condition

Definition. A function f : R× Rm → Rm satisfies a Lipschitz condition
with respect to y on a domain (a, b)×D where D ⊂ Rm if there exists a
constant L such that

∥f(t,y)− f(t, z)∥ ≤ L∥y − z∥, for all t ∈ (a, b) and y, z ∈ D

holds.
The constant L is called the Lipschitz constant.

Remark. f is Lipschitz if

▶ if ∂fi
∂yj

, i, j = 1, . . . ,m are continuous and bounded on (a, b)×D

▶ D is open and convex
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Existence of solutions
Theorem (Existence and uniqueness of a solution)
Consider the initial value problem

y′ = f(t,y), y(t0) = y0

with given initial values t0 ∈ (a, b) and y0 ∈ D.

If
▶ f(t,y) is continuous in (a, b)×D

▶ f(t,y) satisfies the Lipschitz condition with respect to y in (a, b)×D,
then the ODE has one and only one solution in (a, b)×D.

In the following we assume that our ODE under consideration fulfils
this.
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Error Analysis

When we aolve an ODE e. g. with Euler’s method on [t0, tend] we can ask
ourselves

▶ How will the error at the end tend (or any point in between) depend
on the number of steps?

▶ phrased differently: Choose N and set h = tend−t0
N .

Then we get tN = tend.
What can we say about the error eN = y(tend − yN ) ?

In the following we will just consider the scalar equation y′ = f(t, y).
The results also hold for systems of equations.
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Local and Global Error
We will consider two types of errors:

▶ Local Truncation Error (LTE) dn+1

denotes the error made in one single step starting from the
exact/true point (tn, y(tn))

▶ Global error en
denotes the difference between the exact (y(tn)) and numerical (yn)
solution after n steps:
en = y(tn)− yn

Goals.
▶ find an expression for dn
▶ look at the relation between local errors and the global error
▶ find an upper bound for the global error
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Local Truncation Error for Euler’s method
Investigating the error in one step for an ODE y′ = f(t, y).
From the Taylor expansion we get

y(tn + h) = y(tn) + hy′(tn) +
1

2
y′′(ξ), tn < ξ < tn + h

Eulers method starting from (tn, y(tnT )) yields

y(tn + h) ≈ y(tn) + hf(tn, y(tn)) = y(tn) + hy′(tn)

⇒ The local truncation error for Euler’s method: their difference

dn+1 = y(tn + h)− (y(tn) + hy′(tn)) =
1

2
h2y′′(ξ), ξ ∈ (tm, tn + h)

We can observe two things
▶ with a bound C for y′′(ξ) yields that dn+1 = O(h2)

▶ see the error of Euler’s method in:
y(tn + h) = y(tn) + h(f(tn, yn)) + dn+1
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Global Error for Euler’s Scheme
Summary.
We have the exact step (inculding dn+1) and the numerical scheme

y(tn + h) = y(tn) + hf(tn, y(tn)) + dn+1

yn+1 = yn + hf(tn, yn)

Goal. Using
▶ en = y(tn)− yn
▶ an upper bound for fy = ∂f

∂y as |fy(t, y)|≤ L (a Lipschitz constant)
▶ an upper bound for |y′′(t)| ≤ 2D

find
1. an upper bound for |en+1|
2. by iteration an upper bound for |eN |
⇒ We want to say something about decreasing h or increasing N

and how eN behaves then.
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Global Error for Euler’s Scheme – Result
We obtain

|y(tend)− yN | = |eN | ≤ Dh ≤ Ch,

where C =
eL(tend−t0) − 1

L
D depends on

▶ the length of our interval tend − t0
▶ certain properties of y (the D) and f (the L)
! but not on N or h!

We especially get
lim

N→∞
|eN | = 0

Remark.
▶ We got locally dn+1 = O(h2)
▶ We got globally eN = O(h)

Roughly speaking because it takes N (in order of 1
N ) steps (with local

errors) to “reach” tend.
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Local Truncation Error & Consistency
For a Numerical method to solve the ODE y′ = f(t, y) we consider the
Increment function Φ (again), that is, the function that describes our
numerical method as

yn+1 = yn + hΦ(tn, yn, h)

then the local truncation error reads as

dn+1 = y(tn + h)−
(
y(tn) + hΦ(tn, y(tn), h)

)
.

Definition (Consistency)
A numerical method is called consistent if

lim
h→0

dn+1

h
= 0, for all n = 0, 1, . . . , N,N =

⌈b− a

h

⌉
It is called consistent of order p if dn+1 = O(hp+1).
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Remark on Consistency

For systems of equations

yn+1 = yn + hΦ(tn,yn, h)

by considering the absolute norm of the LTE, i. e. if

∥y(t+ h)−
(
y(t) + hΦ(t,y(t), h)

)
∥ ≤ Dhp+1

then numerical method for the system of ODEs is consistent of order p.
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Convergence
Theorem (Convergence of one-step methods)
Assume that there exist positive constantsM andD such that the increment
function Φ satisfies

∥Φ(t,y, h)−Φ(t, z, h)∥ ≤ M∥y − z∥

and the method is consistent of oder p, that is the local truncation error
satisfies

∥y(t+ h)−
(
y(t) + hΦ(t,y(t), h)

)
∥ ≤ Dhp+1

for all t, y and z in a neighbourhood of the solution.
In that case, the global error satisfies

∥eN∥ = ∥y(tend)− yN∥ ≤ Chp, with C =
eM(tend−t0) − 1

M
D.

The method is then called (convergent) of order p.
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Remarks on Convergence

We saw. Consistency (of order p) and Lipschitz condition
⇒ Convergence (of oder p).

Example. For Euler’s method: yn+1 = yn + hf(tn,yn)
⇒ Φ(t,y, h) = f(t,y).
⇒ L = M is the same constant

For Runge-Kutta Methods. The corresponding increment functionΦ is
maybe complicated a constantM as required in the Theorem always
exists.
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Convergence Order for Runge-Kutta
For Runge-Kutta methods, one can prove:

The method is of order p with p ≤ 4 if all
of the conditions in the table on the left
up to and including p are fulfilled.
(all sums run from 1 to s.)

Remark.
Similar conditions for higher order exist,
but get a bit more complicated.

Example. Let’s check Heun’s method.

p conditions

1
∑

i bi = 1

2
∑

i bici = 1/2

3
∑

i bic
2
i = 1/3∑

i,j biaijcj = 1/6

4
∑

i bic
3
i = 1/4∑

i,j biciaijcj = 1/8∑
i,j biaijc

2
j = 1/12∑

i,j,k biaijajkck = 1/24
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Summary (including systems of Equations)
Notation / Definitions.
▶ the ODE: y′ = f(t,y)

▶ the exact solution through (t∗,y∗): y(t, t∗,y∗)

▶ the exact solution of the ODE with initial values t0,y0:
y(t) = y(t ; t0,y0)

▶ one step of the (explicit) method (increment function Φ):
yn+1 = yn + hΦ(tn,yn, h)

Error Concepts.
Let Φ represent a method of order p and Φ̂ a method of order p+ 1.

▶ local truncation error (LTE)
(comparing exact solution to one step “from there”):

dn+1 = y(tn + h; tn,y(tn))−
(
y(tn) + hΦ(tn,y(tn), h)

)
▶ local error: ln+1 = y(tn + h; tn,yn)−

(
yn + hΦ(tn,yn, h)

)
▶ the global error: en = y(tn)− yn



N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy

Error Estimates & Adaptivity



32

Motivation
In our numerical tests we saw that the step size h has to be chosen

▶ if it is too large⇒ too inexact results in yn

▶ if it is too small⇒ too much computational time or memory usage

Approaches.
1. control the global error en = y(tn)− yn

this is quite difficult and beyond the scope of this lecture
2. control the local error ln+1 := y(tn+1; tn,yn)− yn+1

where
▶ we “start from” (tn,yn): We consider the exact solution y(t; tn,yn)

but running through (tn,yn).
▶ compared to dn+1 we have hence a “different starting point” yn and

not y(tn)!
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Approximating the local error

Recap. We saw that for the convergence order we needed power
serieses in h.

Now since we do not have the actual solution y(t), let’s take two
methods, where one is more exact. For both we start from our previous
point (tn,yn):

yn+1 = yn + hΦ(tn,yn, h)

ŷn+1 = yn + hΦ̂(tn,yn, h)
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