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Motivation

Last week we saw the mass-spring-damper (MSD) system as it moves towards
zero-input equilibrium.

This week we will also consider an application of the resistor-inductor-capacitor
(RLC) circuit.

The questions now become:

» What happens to the MSD system in case of shock loads?
» What is the response of an RLC circuit with an on-off switch?




The RLC circuit

Li'(t) + Ri(t C/ ) for t >0,

R § L where L is inductance, R is the resistance, C'
the capacitance, i(t) the current and v(t) the
voltage input which is controlled by a switch.
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Heaviside function

Definition
The Heaviside function reads:

wlt) ::{1 if t >0

0 ift<O 4
Or in a more general form: 1
1 ift>a
u(t —a) == -
( ) {O ift<a 0
a
t

The LT of the Heaviside function reads:

e—llS

L(u(t—a)) =

S
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Using linear combinations of the Heaviside
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Rectangular functions

Using linear combinations of the Heaviside
function we can create rectangular functions:

rb(t) =u(t —a)—u(t —b) a<t<b

¢
We can also introduce periodicity: 16—
rq(t) = u(t) — 2u(t — 2a) + 2u(t — 3a) — .
° ) t

Formalised:

+Z )i2u(t — (i + 1)a)




Translated (and shifted) functions

Assume the signal input f(t) = sin(t)

— f(t)




Translated (and shifted) functions
Assume the signal input f(t) = sin(t)

We can "activate" it at time t = a
using the Heaviside function: A

— f(t)




Translated (and shifted) functions
Assume the signal input f(t) = sin(t)

We can "activate" it at time t = a
using the Heaviside function: A —

I VAN




Translated (and shifted) functions
Assume the signal input f(t) = sin(t)

We can "activate" it at time t = a
using the Heaviside function: A —

I VAN

We can also shift the signal by a and
activate it at time t = a:




Translated (and shifted) functions
Assume the signal input f(t) = sin(t)

We can "activate" it at time t = a
using the Heaviside function: A —

Lomem- f(t-2)u(t-2)
9(t) = u(t — a)f (1) /\
2 n\% /,' vr

We can also shift the signal by a and
activate it at time t = a:

g(t) = u(t —a)f(t —a)




The t-shift theorem

Theorem
If f has the LT F(s). Then the "shifted function"

0 t<a

g<t>=f<t—a>u<t—a>={f@_a) t>a

has the LT
L(g(t)) = L(f(t — a)u(t — a)) = e *F(s).

Equivalently, for the inverse:

ft —a)u(t —a) = L7 (e ™ F(s)).




The t-shift theorem

Theorem
If f has the LT F(s). Then the "shifted function"

0 t<a

g<t>=f<t—a>u<t—a>={f@_a) t>a

has the LT
L(g(t)) = L(f(t — a)u(t — a)) = e *F(s).

Equivalently, for the inverse:

ft —a)u(t —a) = L7 (e ™ F(s)).

Proof: (hint) Change of variable 7 =t — a.
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Example

Find the LT of the function:

Can be written as:
F#) = (u(t) = ult = D) 4+ ult — 1 sin(T),

and the LT reads:




Example #2

We have an RC system with a switch (voltage input). The system is at rest
until £ = a, when we turn it on and at ¢t = b we turn if off again.
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Example #2

We have an RC system with a switch (voltage input). The system is at rest
until £ = a, when we turn it on and at ¢t = b we turn if off again.
The system reads:

1 t

Ri(t) + / i(T)dr = v(t)

¢ Jo
with v(t) = [u(t — a) — u(t — b)] vo
The LT reads:

11 e—as _ e—bs
I — = F
or:
—as —bs
vy e —e
I == — 5
) R| s+qc ]




Example #2

The current response is:

it) = %0 [U(t —a)e o) _y(t — b)e—R%(t—b)]

As an example, forvg =5, R=1,C =1, a =2 and b = 3 we get:

5.000 —— response

0.000 >
V t
~3.042
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Dirac’s delta function

Let us consider the MSD system. What happens if we have a shock load?

At =2.0

Shock means the force is applied over a very 6
short time interval 5

In an ideal setting, we can model such cases
using Dirac's delta function. Let us start from
the shifted function fi(t — a):

Lifa<t<a+k o —

0 otherwise B R

fk(t—a): {k
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Dirac’s delta function & Properties

Dirac's delta (generalised) function is the limit of fx(t —a) as k — 0:

oo t=a
(t-a) B30 Jelt —a) {O otherwise
Three properties are of interest:
° f ot —a)dt=1
o [ 6(t—a)f()dt = f(a)

e Dirac’s delta generalised function can be seen as the derivative of the
Heaviside function.
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Laplace transform of Dirac’s delta function

The Laplace transform of Dirac's delta function reads:

L(5(t —a)) = e

Hint: Use the last property to rewrite:

Hint 2: Alternatively, use sifting property:

/ §(t —a)e *tdt = e



Examples
MSD system with M =1, C =0 and K =1 is resting.
At t = 1 we impose a "shock input".

y"(t) +y(t) = —6(t — 1), for t >0
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Examples
MSD system with M =1, C =0 and K =1 is resting.
At t = 1 we impose a "shock input".

y"(t) +y(t) = —6(t — 1), for t >0

y'(0)=0
y(0) =0
Reminder: )
Q)= T osr K
and

Y(s) = Q(s) [(Ms+ C)y(0) + My'(0)] + R(s)Q(s)

The result back in ¢ reads:

y(t) = —u(t — 1) sin(t — 1)
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