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Motivation

Last week we saw the mass-spring-damper (MSD) system as it moves towards
zero-input equilibrium.

This week we will also consider an application of the resistor-inductor-capacitor
(RLC) circuit.

The questions now become:

I What happens to the MSD system in case of shock loads?
I What is the response of an RLC circuit with an on-off switch?
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The RLC circuit

Li′(t) +Ri(t) +
1

C

∫
i(t)dt = v(t) for t ≥ 0,

where L is inductance, R is the resistance, C
the capacitance, i(t) the current and v(t) the
voltage input which is controlled by a switch.
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Heaviside function
Definition
The Heaviside function reads:

u(t) :=

{
1 if t ≥ 0

0 if t < 0

Or in a more general form:

u(t− a) :=

{
1 if t ≥ a
0 if t < a

The LT of the Heaviside function reads:

L(u(t− a)) = e−as

s
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Rectangular functions

Using linear combinations of the Heaviside
function we can create rectangular functions:

rba(t) = u(t− a)−u(t− b) a ≤ t < b

We can also introduce periodicity:

ra(t) = u(t)− 2u(t− 2a) + 2u(t− 3a)− . . .

Formalised:

ra(t) = u(t) +

∞∑
i=1

(−1)i2u(t− (i+ 1)a)
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Translated (and shifted) functions

Assume the signal input f(t) = sin(t)

We can "activate" it at time t = a
using the Heaviside function:

g(t) = u(t− a)f(t)

We can also shift the signal by a and
activate it at time t = a:

g(t) = u(t− a)f(t− a)
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The t-shift theorem

Theorem
If f has the LT F (s). Then the "shifted function"

g(t) = f(t− a)u(t− a) =

{
0 t < a

f(t− a) t ≥ a

has the LT
L(g(t)) = L(f(t− a)u(t− a)) = e−asF (s).

Equivalently, for the inverse:

f(t− a)u(t− a) = L−1(e−asF (s)).

Proof: (hint) Change of variable τ = t− a.
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Example

Find the LT of the function:

f(t) =

{
t 0 ≤ t < 1

sin(πt2 ) t ≥ 1
.

Can be written as:

f(t) = (u(t)− u(t− 1)) t+ u(t− 1) sin(
πt

2
),

and the LT reads:

L(f(t)) = 1

s2
+ e−s

(
s+ 1

s2
+

s

s2 + π2

4

)
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Example #2

We have an RC system with a switch (voltage input). The system is at rest
until t = a, when we turn it on and at t = b we turn if off again.

The system reads:

Ri(t) +
1

C

∫ t

0
i(τ)dτ = v(t)

with v(t) = [u(t− a)− u(t− b)] v0

The LT reads:

RI(s) +
1

C

1

s
I(s) = v0

[
e−as − e−bs

s

]
,

or:

I(s) =
v0
R

[
e−as − e−bs

s+ 1
RC

]
,



10 / 15

Example #2

We have an RC system with a switch (voltage input). The system is at rest
until t = a, when we turn it on and at t = b we turn if off again.

The system reads:

Ri(t) +
1

C

∫ t

0
i(τ)dτ = v(t)

with v(t) = [u(t− a)− u(t− b)] v0

The LT reads:

RI(s) +
1

C

1

s
I(s) = v0

[
e−as − e−bs

s

]
,

or:

I(s) =
v0
R

[
e−as − e−bs

s+ 1
RC

]
,



10 / 15

Example #2

We have an RC system with a switch (voltage input). The system is at rest
until t = a, when we turn it on and at t = b we turn if off again.

The system reads:

Ri(t) +
1

C

∫ t

0
i(τ)dτ = v(t)

with v(t) = [u(t− a)− u(t− b)] v0

The LT reads:

RI(s) +
1

C

1

s
I(s) = v0

[
e−as − e−bs

s

]
,

or:

I(s) =
v0
R

[
e−as − e−bs

s+ 1
RC

]
,



11 / 15

Example #2
The current response is:

i(t) =
v0
R

[
u(t− a)e−

1
RC

(t−a) − u(t− b)e−
1

RC
(t−b)

]
As an example, for v0 = 5, R = 1, C = 1, a = 2 and b = 3 we get:
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Dirac’s delta function

Let us consider the MSD system. What happens if we have a shock load?

Shock means the force is applied over a very
short time interval

In an ideal setting, we can model such cases
using Dirac’s delta function. Let us start from
the shifted function fk(t− a):

fk(t− a) =

{
1
k if a ≤ t ≤ a+ k

0 otherwise
.
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Dirac’s delta function & Properties

Dirac’s delta (generalised) function is the limit of fk(t− a) as k → 0:

δ(t− a) = lim
k→0

fk(t− a) =

{
∞ t = a

0 otherwise

Three properties are of interest:

•
∫∞
−∞ δ(t− a)dt = 1

•
∫∞
−∞ δ(t− a)f(t)dt = f(a)

• Dirac’s delta generalised function can be seen as the derivative of the
Heaviside function.
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Laplace transform of Dirac’s delta function

The Laplace transform of Dirac’s delta function reads:

L(δ(t− a)) = e−as

Hint: Use the last property to rewrite:

δ(t− a) = lim
k→0

1

k
[u(t− a)− u(t− (a+ k))]

Hint 2: Alternatively, use sifting property:∫ ∞
−∞

δ(t− a)e−stdt = e−as
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Examples
MSD system with M = 1, C = 0 and K = 1 is resting.
At t = 1 we impose a "shock input".

y′′(t) + y(t) = −δ(t− 1), for t ≥ 0

y′(0) = 0

y(0) = 0

Reminder:
Q(s) =

1

Ms2 + Cs+K
and

Y (s) = Q(s)
[
(Ms+ C)y(0) +My′(0)

]
+R(s)Q(s)

The result back in t reads:

y(t) = −u(t− 1) sin(t− 1)



15 / 15

Examples
MSD system with M = 1, C = 0 and K = 1 is resting.
At t = 1 we impose a "shock input".

y′′(t) + y(t) = −δ(t− 1), for t ≥ 0

y′(0) = 0

y(0) = 0

Reminder:
Q(s) =

1

Ms2 + Cs+K
and

Y (s) = Q(s)
[
(Ms+ C)y(0) +My′(0)

]
+R(s)Q(s)

The result back in t reads:

y(t) = −u(t− 1) sin(t− 1)



15 / 15

Examples
MSD system with M = 1, C = 0 and K = 1 is resting.
At t = 1 we impose a "shock input".

y′′(t) + y(t) = −δ(t− 1), for t ≥ 0

y′(0) = 0

y(0) = 0

Reminder:
Q(s) =

1

Ms2 + Cs+K
and

Y (s) = Q(s)
[
(Ms+ C)y(0) +My′(0)

]
+R(s)Q(s)

The result back in t reads:

y(t) = −u(t− 1) sin(t− 1)


	anm2: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


