Laplace transform III

Mathematics 4N

Vasileios Tsiolakis
March 23, 2023

Outline

- Motivation
- Heaviside function
- Second shifting theorem
- Dirac's delta function

Motivation

Last week we saw the mass-spring-damper (MSD) system as it moves towards zero-input equilibrium.

This week we will also consider an application of the resistor-inductor-capacitor (RLC) circuit.

The questions now become:

- What happens to the MSD system in case of shock loads?
- What is the response of an RLC circuit with an on-off switch?

The RLC circuit

$$
L i^{\prime}(t)+R i(t)+\frac{1}{C} \int i(t) d t=v(t) \text { for } t \geq 0
$$

where L is inductance, R is the resistance, C the capacitance, $i(t)$ the current and $v(t)$ the voltage input which is controlled by a switch.

Heaviside function

Definition

The Heaviside function reads:

$$
u(t):= \begin{cases}1 & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Heaviside function

Definition

The Heaviside function reads:

$$
u(t):= \begin{cases}1 & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Or in a more general form:

$$
u(t-a):= \begin{cases}1 & \text { if } t \geq a \\ 0 & \text { if } t<a\end{cases}
$$

Heaviside function

Definition

The Heaviside function reads:

$$
u(t):= \begin{cases}1 & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Or in a more general form:

$$
u(t-a):= \begin{cases}1 & \text { if } t \geq a \\ 0 & \text { if } t<a\end{cases}
$$

The LT of the Heaviside function reads:

$$
\mathcal{L}(u(t-a))=\frac{e^{-a s}}{s}
$$

Rectangular functions

Using linear combinations of the Heaviside function we can create rectangular functions:

$$
r_{a}^{b}(t)=u(t-a)-u(t-b) \quad a \leq t<b
$$

Rectangular functions

Using linear combinations of the Heaviside function we can create rectangular functions:

$$
r_{a}^{b}(t)=u(t-a)-u(t-b) \quad a \leq t<b
$$

Rectangular functions

Using linear combinations of the Heaviside function we can create rectangular functions:

$$
r_{a}^{b}(t)=u(t-a)-u(t-b) \quad a \leq t<b
$$

Rectangular functions

Using linear combinations of the Heaviside function we can create rectangular functions:

$$
r_{a}^{b}(t)=u(t-a)-u(t-b) \quad a \leq t<b
$$

We can also introduce periodicity:

$$
r_{a}(t)=u(t)-2 u(t-2 a)+2 u(t-3 a)-\ldots
$$

Rectangular functions

Using linear combinations of the Heaviside function we can create rectangular functions:

$$
r_{a}^{b}(t)=u(t-a)-u(t-b) \quad a \leq t<b
$$

We can also introduce periodicity:

$$
r_{a}(t)=u(t)-2 u(t-2 a)+2 u(t-3 a)-\ldots
$$

Formalised:

$$
r_{a}(t)=u(t)+\sum_{i=1}^{\infty}(-1)^{i} 2 u(t-(i+1) a)
$$

Translated (and shifted) functions

Assume the signal input $f(t)=\sin (t)$

Translated (and shifted) functions

Assume the signal input $f(t)=\sin (t)$
We can "activate" it at time $t=a$ using the Heaviside function:

Translated (and shifted) functions

Assume the signal input $f(t)=\sin (t)$
We can "activate" it at time $t=a$ using the Heaviside function:

$$
g(t)=u(t-a) f(t)
$$

Translated (and shifted) functions

Assume the signal input $f(t)=\sin (t)$
We can "activate" it at time $t=a$ using the Heaviside function:

$$
g(t)=u(t-a) f(t)
$$

We can also shift the signal by a and activate it at time $t=a$:

Translated (and shifted) functions

Assume the signal input $f(t)=\sin (t)$
We can "activate" it at time $t=a$ using the Heaviside function:

$$
g(t)=u(t-a) f(t)
$$

We can also shift the signal by a and activate it at time $t=a$:

$$
g(t)=u(t-a) f(t-a)
$$

The t-shift theorem

Theorem
If f has the LT $F(s)$. Then the "shifted function"

$$
g(t)=f(t-a) u(t-a)= \begin{cases}0 & t<a \\ f(t-a) & t \geq a\end{cases}
$$

has the LT

$$
\mathcal{L}(g(t))=\mathcal{L}(f(t-a) u(t-a))=e^{-a s} F(s) .
$$

Equivalently, for the inverse:

$$
f(t-a) u(t-a)=\mathcal{L}^{-1}\left(e^{-a s} F(s)\right)
$$

The t-shift theorem

Theorem
If f has the LT $F(s)$. Then the "shifted function"

$$
g(t)=f(t-a) u(t-a)= \begin{cases}0 & t<a \\ f(t-a) & t \geq a\end{cases}
$$

has the LT

$$
\mathcal{L}(g(t))=\mathcal{L}(f(t-a) u(t-a))=e^{-a s} F(s) .
$$

Equivalently, for the inverse:

$$
f(t-a) u(t-a)=\mathcal{L}^{-1}\left(e^{-a s} F(s)\right)
$$

Proof: (hint) Change of variable $\tau=t-a$.

Example

Find the LT of the function:

$$
f(t)= \begin{cases}t & 0 \leq t<1 \\ \sin \left(\frac{\pi t}{2}\right) & t \geq 1\end{cases}
$$

Example

Find the LT of the function:

$$
f(t)= \begin{cases}t & 0 \leq t<1 \\ \sin \left(\frac{\pi t}{2}\right) & t \geq 1\end{cases}
$$

Can be written as:

$$
f(t)=(u(t)-u(t-1)) t+u(t-1) \sin \left(\frac{\pi t}{2}\right)
$$

and the LT reads:

$$
\mathcal{L}(f(t))=\frac{1}{s^{2}}+e^{-s}\left(\frac{s+1}{s^{2}}+\frac{s}{s^{2}+\frac{\pi^{2}}{4}}\right)
$$

Example \#2

We have an RC system with a switch (voltage input). The system is at rest until $t=a$, when we turn it on and at $t=b$ we turn if off again.

Example \#2

We have an RC system with a switch (voltage input). The system is at rest until $t=a$, when we turn it on and at $t=b$ we turn if off again.

The system reads:

$$
R i(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau=v(t)
$$

with $v(t)=[u(t-a)-u(t-b)] v_{0}$

Example \#2

We have an RC system with a switch (voltage input). The system is at rest until $t=a$, when we turn it on and at $t=b$ we turn if off again.

The system reads:

$$
R i(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau=v(t)
$$

with $v(t)=[u(t-a)-u(t-b)] v_{0}$
The LT reads:

$$
R I(s)+\frac{1}{C} \frac{1}{s} I(s)=v_{0}\left[\frac{e^{-a s}-e^{-b s}}{s}\right],
$$

or:

$$
I(s)=\frac{v_{0}}{R}\left[\frac{e^{-a s}-e^{-b s}}{s+\frac{1}{R C}}\right]
$$

Example \#2

The current response is:

$$
i(t)=\frac{v_{0}}{R}\left[u(t-a) e^{-\frac{1}{R C}(t-a)}-u(t-b) e^{-\frac{1}{R C}(t-b)}\right]
$$

As an example, for $v_{0}=5, R=1, C=1, a=2$ and $b=3$ we get:

Dirac's delta function

Let us consider the MSD system. What happens if we have a shock load?

Dirac's delta function

Let us consider the MSD system. What happens if we have a shock load?
Shock means the force is applied over a very short time interval

Dirac's delta function

Let us consider the MSD system. What happens if we have a shock load?
Shock means the force is applied over a very short time interval

In an ideal setting, we can model such cases using Dirac's delta function. Let us start from the shifted function $f_{k}(t-a)$:

$$
f_{k}(t-a)= \begin{cases}\frac{1}{k} & \text { if } a \leq t \leq a+k \\ 0 & \text { otherwise }\end{cases}
$$

Dirac's delta function \& Properties

Dirac's delta (generalised) function is the limit of $f_{k}(t-a)$ as $k \rightarrow 0$:

$$
\delta(t-a)=\lim _{k \rightarrow 0} f_{k}(t-a)= \begin{cases}\infty & t=a \\ 0 & \text { otherwise }\end{cases}
$$

Dirac's delta function \& Properties

Dirac's delta (generalised) function is the limit of $f_{k}(t-a)$ as $k \rightarrow 0$:

$$
\delta(t-a)=\lim _{k \rightarrow 0} f_{k}(t-a)= \begin{cases}\infty & t=a \\ 0 & \text { otherwise }\end{cases}
$$

Three properties are of interest:

- $\int_{-\infty}^{\infty} \delta(t-a) d t=1$

Dirac's delta function \& Properties

Dirac's delta (generalised) function is the limit of $f_{k}(t-a)$ as $k \rightarrow 0$:

$$
\delta(t-a)=\lim _{k \rightarrow 0} f_{k}(t-a)= \begin{cases}\infty & t=a \\ 0 & \text { otherwise }\end{cases}
$$

Three properties are of interest:

- $\int_{-\infty}^{\infty} \delta(t-a) d t=1$
- $\int_{-\infty}^{\infty} \delta(t-a) f(t) d t=f(a)$

Dirac's delta function \& Properties

Dirac's delta (generalised) function is the limit of $f_{k}(t-a)$ as $k \rightarrow 0$:

$$
\delta(t-a)=\lim _{k \rightarrow 0} f_{k}(t-a)= \begin{cases}\infty & t=a \\ 0 & \text { otherwise }\end{cases}
$$

Three properties are of interest:

- $\int_{-\infty}^{\infty} \delta(t-a) d t=1$
- $\int_{-\infty}^{\infty} \delta(t-a) f(t) d t=f(a)$
- Dirac's delta generalised function can be seen as the derivative of the Heaviside function.

Laplace transform of Dirac's delta function

The Laplace transform of Dirac's delta function reads:

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

Laplace transform of Dirac's delta function

The Laplace transform of Dirac's delta function reads:

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

Hint: Use the last property to rewrite:

$$
\delta(t-a)=\lim _{k \rightarrow 0} \frac{1}{k}[u(t-a)-u(t-(a+k))]
$$

Laplace transform of Dirac's delta function

The Laplace transform of Dirac's delta function reads:

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

Hint: Use the last property to rewrite:

$$
\delta(t-a)=\lim _{k \rightarrow 0} \frac{1}{k}[u(t-a)-u(t-(a+k))]
$$

Hint 2: Alternatively, use sifting property:

$$
\int_{-\infty}^{\infty} \delta(t-a) e^{-s t} d t=e^{-a s}
$$

Examples

MSD system with $M=1, C=0$ and $K=1$ is resting. At $t=1$ we impose a "shock input".

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t) & =-\delta(t-1), \text { for } t \geq 0 \\
y^{\prime}(0) & =0 \\
y(0) & =0
\end{aligned}
$$

Examples

MSD system with $M=1, C=0$ and $K=1$ is resting. At $t=1$ we impose a "shock input".

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t) & =-\delta(t-1), \text { for } t \geq 0 \\
y^{\prime}(0) & =0 \\
y(0) & =0
\end{aligned}
$$

Reminder:

$$
Q(s)=\frac{1}{M s^{2}+C s+K}
$$

and

$$
Y(s)=Q(s)\left[(M s+C) y(0)+M y^{\prime}(0)\right]+R(s) Q(s)
$$

Examples

MSD system with $M=1, C=0$ and $K=1$ is resting. At $t=1$ we impose a "shock input".

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t) & =-\delta(t-1), \text { for } t \geq 0 \\
y^{\prime}(0) & =0 \\
y(0) & =0
\end{aligned}
$$

Reminder:

$$
Q(s)=\frac{1}{M s^{2}+C s+K}
$$

and

$$
Y(s)=Q(s)\left[(M s+C) y(0)+M y^{\prime}(0)\right]+R(s) Q(s)
$$

The result back in t reads:

$$
y(t)=-u(t-1) \sin (t-1)
$$

