TMA4125 Matematikk 4N

Numerics for PDEs II

Ronny Bergmann
Department of Mathematical Sciences, NTNU.
March 10, 2023

Numerical Methods for PDEs - Overview

Goal. Solve a Partial Differential Equation (PDE) numerically.
Approach. We will use finite difference methods.
Roughly speaking these consist of

1. Discretize the domain on which the equation is defined.
2. On each grid point:

Approximate the involved derivatives by finite differences, using the values in neighbouring grid points.
3. Replace the exact solutions by their approximations.
4. Solve the resulting system of equations.

Numerical Methods for PDEs - Roadmap

1. Numerical Differentiation - How to discretize derivatives?
2. Boundary Value Problems - How to tackle boundary conditions?
3. Example. The Heat Equation for some c

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) & =c^{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t), & & 0 \leq x \leq L \\
u(0, t) & =g_{0}(t), \quad u(1, t)=g_{1}(t),, & & \text { Boundary conditions } \\
u(x, 0) & =f(x) & & \text { Initial conditions }
\end{aligned}
$$

which we aim to solve for some time interval, that is for $t \in[0, T]$.
This week. Numerical schemes taking into account boundary conditions and stability.
\Rightarrow we have to figure out how to discretize time and space.

Recap. (Different) Boundary Conditions

To get a unique solution of a BVP (or a PDE): more information required, usually given on the the boundaries

We already learned about the most common boundary conditions

1. Dirichlet conditions. The solution is known at the boundary. We know the temperature $u(0, t)=g_{0}(t)$ and $u(L, t)=g_{L}(t)$ on the boundary
2. Neumann conditions. The derivative is known at the boundary. We know the heat flux $\frac{\partial u}{\partial x}(0, t)=g_{0}(t)$ and $\frac{\partial u}{\partial x}(L, t)=g_{L}(t)$
3. Robin (or mixed) conditions. A combination of those. We might for example know $a_{x} u(x, t)+b_{x} \frac{\partial u}{\partial x}(x, t)$ at $x=0$ and $x=L$

Until now we mostly considered.
Numerical Methods with (zero) Dirichlet boundary conditions.

Recap. Numerical Differentiation

Goal. Numerical approximation of f^{\prime} and $f^{\prime \prime}$.
Approach. Take some step length $h>0$ and for
First order. For the first derivative we considered
Forward Difference $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\mathcal{O}(h)$
Backward Difference $f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\mathcal{O}(h)$
Cental Difference $f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right)$
Second order. Similarly we combine a forward and a backward difference to

$$
f^{\prime \prime}(x)=\frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}+\mathcal{O}\left(h^{2}\right)
$$

A Grid of points

With the discretization of space and time

$$
\begin{array}{ll}
x_{i}=x_{0}+i h, & i=0, \ldots, M, \\
t_{n}=t_{0}+n k, & n=0, \ldots, N,
\end{array} \quad k=\frac{L}{N}
$$

We obtain a grid of points (See sketch).
Idea. We approximate the partial derivatives in the Heat equation as

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) & =\frac{u(x, t+k)-u(x, t)}{k}+\mathcal{O}(k) \quad \text { (temporal 1st deriv., fw.) } \\
\frac{\partial^{2}}{\partial x^{2}} u(x, t) & =\frac{u(x-h, t)-2 u(x, t)-u(x+h, t)}{h^{2}}+\mathcal{O}\left(h^{2}\right) \quad \text { (spatial 2nd deriv.) }
\end{aligned}
$$

$$
\text { but only at our grid points which we denote by } U_{i}^{n} \approx u\left(x_{i}, t_{n}\right)
$$

The Explicit Scheme - Forward Euler Method

1. From the initial conditions we know $U_{i}^{0}=u\left(x_{i}, 0\right)=f\left(x_{i}\right)$
2. For each time point $n=0,1,2, \ldots$
2.1 We have to take into account the boundary conditions

- Dirichlet: We have $u(0, t)=g_{0}(t)$ and $u(L, t)=g_{L}(t)$
\Rightarrow We can just set $U_{0}^{n+1}=g_{0}\left(t_{n+1}\right)$ and $U_{N}^{n+1}=g_{L}\left(t_{n+1}\right)$ (other BC on the next slide.)
2.2 we compute

$$
U_{i}^{n+1}=U_{i}^{n}+\alpha\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}\right),
$$

for $i=1, \ldots, N-1$, where $\alpha=\frac{c^{2} k}{h^{2}}$

Neumann Boundary Conditions

If we have

$$
\frac{\partial u}{\partial x}(0, t)=g_{0}(t) \quad \text { and } \frac{\partial u}{\partial x}(L, t)=g_{L}(t)
$$

for two given functions h_{0}, h_{L}.
What can we do here for the Step 2.1 on the last slide?
Use finite differences!
Example. On the left hand side at $x=0$ we obtain

$$
U_{0}^{n+1}=U_{0}^{n}+2 \alpha\left(U_{1}^{n}-U_{0}^{n}+h g_{0}\left(t_{n}\right)\right)
$$

and similarly on the right for $x=L$ we obtain

$$
U_{M}^{n+1}=U_{M}^{n}+2 \alpha\left(U_{M-1}^{n}-U_{M}^{n}+h g_{L}\left(t_{n}\right)\right)
$$

Robin Boundary Conditions

Mixing both the Dirichlet case and the Neumann case we have If we have

$$
a_{0} \frac{\partial u}{\partial x}(0, t)+b_{0} u(0, t)=g_{0}(t) \quad \text { and } a_{L} \frac{\partial u}{\partial x}(L, t)+b_{L} u(L, t)=g_{L}(t)
$$

You can combine the last two cases and obtain

$$
U_{0}^{n+1}=U_{0}^{n}+2 \alpha\left(U_{1}^{n}-U_{0}^{n}-\frac{h b_{0}}{a_{0}} U_{0}^{n}+\frac{h}{a_{0}} g_{0}\left(t_{n}\right)\right)
$$

as well as

$$
U_{M}^{n+1}=U_{M}^{n}+2 \alpha\left(U_{M-1}^{n}-U_{M}^{n}-\frac{h b_{L}}{a_{L}} U_{M}^{n}+\frac{h}{a_{0}} g_{L}\left(t_{n}\right)\right)
$$

Matrix Notation - homogen. Neumann BC example 1/2

If we set

$$
\frac{\partial u}{\partial x}(0, t)=g_{0}(t)=0 \quad \text { and } \frac{\partial u}{\partial x}(L, t)+b_{L} u(L, t)==g_{L}(t)=0
$$

we obtain the homogeneous Neumann boundary conditions.
Then our equations look like

$$
\begin{aligned}
& U_{0}^{n+1}=U_{0}^{n}+2 \alpha\left(U_{1}^{n}-U_{0}^{n}\right) \\
& U_{i}^{n+1}=U_{i}^{n}+\alpha\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}\right), \quad \text { for } i=1, \ldots, M-1 \\
& U_{M}^{n+1}=U_{M}^{n}+2 \alpha\left(U_{M-1}^{n}-U_{M}^{n}\right)
\end{aligned}
$$

We can write these nicer using Matrix-Vector notation. We introduce $\mathbf{U}^{n}=\left(U_{0}^{n}, \ldots, U_{M}^{n}\right)^{\mathrm{T}} \in \mathbb{R}^{M+1}$ and similarly \mathbf{U}^{n+1}

Matrix Notation - homogen. Neumann BC Example 2/2

$$
A=\left(\begin{array}{cccccccc}
-2 & 2 & 0 & \cdots & & & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & & \cdots & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & -2 & 1 & 0 \\
0 & \cdots & & \cdots & 0 & 1 & -2 & 1 \\
0 & \cdots & & & \cdots & 0 & 2 & -2
\end{array}\right) \in \mathbb{R}^{(M+1) \times(M+1)}
$$

and denote by $I_{M+1} \in \mathbb{R}^{(M+1) \times(M+1)}$ be the ($M+1$)-dimensional identity matrix.
\Rightarrow We can also write the updates as

$$
\mathbf{U}^{n+1}=\left(I_{M+1}+\alpha A\right) \mathbf{U}^{n} .
$$

Let's look at this in an example in code

(In)Stability

Idea (informally). We want to avoid, that the solution "explodes".
Naming $Q:=\left(I_{M+1}+\alpha A\right)$ and using $\mathbf{U}^{0}=\left(f\left(x_{0}, \ldots, f\left(x_{M}\right)\right)^{\mathrm{T}}\right.$ we get

$$
\mathbf{U}^{n+1}=Q^{n+1} \mathbf{U}^{0}
$$

\Rightarrow the largest "scaling" the matrix Q introduces has to be less than one. This corresponds to considering the largest Eigenvalue.

We obtain that for Stability we need $\alpha=\frac{c^{2} k}{h^{2}} \leq \frac{1}{2}$
\Rightarrow If we want to take half the step size $\left(\frac{h}{2}\right)$ in space, we have to take $\frac{k}{4}$ stepsize in time to still get the same α.

Or more drastically, if we want to increase the time resolution to $\frac{h}{10}$, we have to take $\frac{k}{100}$ in time!

Implicit Euler Method

Idea. Take a backwards difference in time instead.

We obtain

$$
U_{i}^{n+1}-c^{2} \frac{k}{h^{2}}\left(U_{i+1}^{n+1}-2 U_{i}^{n+1}+U_{i-1}^{n+1}\right)=U_{i}^{n}
$$

where we do not get an explicit formula for each U_{i}^{n+1} but an implicit one, where these new values (on the left) depend on each other.

We shorten again $\alpha=c^{2} \frac{k}{h^{2}}$.
We again consider first Dirichlet boundary conditions. and obtain

$$
\begin{aligned}
U_{1}^{n+1}-\alpha\left(U_{2}^{n+1}-2 U_{1}^{n+1}\right) & =U_{1}^{n}-\alpha g_{0}\left(t_{n+1}\right) \\
U_{M-1}^{n+1}-\alpha\left(U_{M-2}^{n+1}-2 U_{M-1}^{n+1}\right) & =U_{M-1}^{n}-\alpha g_{L}\left(t_{n+1}\right)
\end{aligned}
$$

Implicit Euler Method (Dirichlet BC) in Matrix Form

Using the matrix $B \in \mathbb{R}^{M-1 \times M-1}$ and the mathbftor $\mathbf{b}^{n+1} \in \mathbb{R}^{M-1}$ given by

$$
B=\left(\begin{array}{cccccccc}
-2 & 1 & 0 & \cdots & & & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & & \cdots & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & -2 & 1 & 0 \\
0 & \cdots & & \cdots & 0 & 1 & -2 & 1 \\
0 & \cdots & & & \cdots & 0 & 1 & -2
\end{array}\right) \quad \text { and } \quad \mathbf{b}^{n+1}=\left(\begin{array}{c}
g_{0}\left(t_{n-1}\right) \\
0 \\
0 \\
\vdots \\
0 \\
g_{L}\left(t_{n-1}\right)
\end{array}\right)
$$

and the identity I_{M-1} as before, we can write the equations for $\mathbf{U}^{n+1}=\left(u_{1}^{n+1}, \ldots, U_{M-1}^{n+1}\right)^{\mathrm{T}}$ as

$$
\left(I_{M-1}-\alpha B\right) \mathbf{U}^{n+1}=\mathbf{U}^{n}+\alpha \mathbf{U}^{n+1}
$$

\Rightarrow This is a linear system of equations \Rightarrow Gaussian elimination

- hut cinco it's tridiaoonal ovon factor mothods availablo (O) M) I

Implicit Euler with Neumann BC

For Neumann boundary conditions we (again) have

$$
\partial_{x} u(0, t)=g_{0}(t), \quad \text { and } \quad \partial_{x} u(L, t)=g_{L}(t)
$$

\Rightarrow Same approach as before (with detour via U_{-1}^{n-1} and U_{M+1}^{n+1}) yields

$$
\begin{aligned}
U_{0}^{n+1}-2 \alpha\left(U_{1}^{n+1}-U_{0}^{n+1}\right) & =U_{0}^{n}+2 \alpha h g_{0}\left(t_{n+1}\right) \\
U_{i}^{n+1}-\alpha\left(U_{i-1}^{n+1}-2 U_{i}^{n+1}+U_{i+1}^{n+1}\right) & =U_{i}^{n}, \quad \text { for } i=1, \ldots, M-1, \\
U_{M}^{n+1}-2 \alpha\left(U_{M-1}^{n+1}-U_{M}^{n+1}\right) & =U_{M}^{n}-2 \alpha h g_{L}\left(t_{n+1}\right)
\end{aligned}
$$

\Rightarrow To capture the two highlighted terms, we introduce $\mathbf{a}^{n+1}=\left(g_{0}\left(t_{n+1}\right), 0,0, \ldots, 0,-g_{L}\left(t_{n+1}\right)\right)^{\mathrm{T}}$.
To obtain $\mathbf{U}^{n+1}=\left(U_{0}^{n+1}, \ldots, U_{M}^{n+1}\right)^{\mathrm{T}}$: Using A from before we get

$$
\left(I_{M+1}-\alpha A\right) \mathbf{U}^{n+1}=\mathbf{U}^{n}+2 \alpha h \mathbf{a}^{n+1}
$$

\Rightarrow again a tridiagonal system \Rightarrow efficiently solvable,

Implicit Euler - Remarks

- The computations are only slightly more costly than for Explicit Euler
- The method is unconditionally stable
\Rightarrow in principle we can use arbitrarily large step sizes
- in practice: For accuracy still small step sizes required (just their ratio in α not so important)

Approximation Errors. We used were

- $\mathcal{O}\left(h^{2}\right)$ in space (second order difference)
- $\mathcal{O}(k)$ in time (backward difference)
\Rightarrow to reduce the error by a factor $\frac{1}{4}$: we require $\frac{k}{4}$ but only $\frac{h}{2}$.

Or informally: k has to "behave like" h^{2}.

Crank-Nicolson Method

Idea. Combine Explicit and Implicit Euler Methods.
For example for Neumann boundary conditions, both methods read

$$
\begin{aligned}
\mathbf{U}^{n+1} & =\left(I_{M+1}+\alpha A\right) \mathbf{U}^{n}+2 \alpha h \mathbf{a}^{n}, \\
\left(I_{M+1}-\alpha A\right) \mathbf{U}^{n+1} & =\mathbf{U}^{n}+2 \alpha h \mathbf{a}^{n+1},
\end{aligned}
$$

Approach. Take the average of both. We get

$$
\text { (remember that here } \mathbf{U}^{n+1} \in \mathbb{R}^{M+1} \text {, includes } U_{0}^{n+1}, U_{M}^{n+1} \text {) }
$$

$$
\left(I_{M+1}-\frac{\alpha}{2} A\right) \mathbf{U}^{n+1}=\left(I_{M+1}+\frac{\alpha}{2} A\right) \mathbf{U}^{n}+\alpha h\left(\mathbf{a}^{n}+\mathbf{a}^{n+1}\right) .
$$

Similarly for Dirichlet. taking the average we get (remember that here $\mathbf{U}^{n+1} \in \mathbb{R}^{M-1}$ does not include the boundary)

$$
\left(I_{M-1}-\frac{\alpha}{2} B\right) \mathbf{U}^{n+1}=\left(I_{M-1}+\frac{\alpha}{2} B\right) \mathbf{U}^{n}+\frac{\alpha}{2}\left(\mathbf{b}^{n}+\mathbf{b}^{n+1}\right) .
$$

Crank-Nicolson Method

The overall algorithm includes

- Choosing stepsizes $h=\frac{L}{M}, k=\frac{T}{N}$
- Setting up U_{i}^{0}
- Setting up A (or B depending on the BC)
- iterating the updates from last slide for $n=0,1,2, \ldots$

Numerical Cost. The cost is only slightly higher than for the implicit Euler Method.
Numerical Error. The numeical error is of order $\mathcal{O}\left(h^{2}+k^{2}\right)$.

ם

Modelling very (very) long bars

The Heat Equation on the Real line.

Motivation / Model Problem. Consider the Heat equation, $L, c>0$, with zero Dirichlet BC

$$
\begin{aligned}
\frac{\partial}{\partial t} u & =c^{2} \frac{\partial^{2}}{\partial x^{2}} u, \\
u(x, 0) & =f(x) \\
u\left(-\frac{L}{2}, t\right) & =u\left(\frac{L}{2}, t\right)=0,
\end{aligned}
$$

$$
-\frac{L}{2} \leq x \leq \frac{L}{2}, t \geq 0
$$

(Initial Condition)
(Boundary Conditions)
What if we let L tend to ∞ ?

The infinite wire.

$$
\begin{aligned}
\frac{\partial}{\partial t} u & =c^{2} \frac{\partial^{2}}{\partial x^{2}} u \\
u(x, 0) & =f(x) \\
\lim _{x \rightarrow \pm \infty} u(x, t) & =0
\end{aligned}
$$

$$
x \in \mathbb{R}, t \geq 0
$$

(Initial Condition)
(Boundary Conditions)
\Rightarrow We use the Fourier Transform!

Recap. The Fourier Transform.

 For $f \in L_{1}(\mathbb{R})$, the Fourier Transform is defined by$$
\hat{f}(\omega):=\mathcal{F}(f)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x, \quad \omega \in \mathbb{R}
$$

And for a function $g(\omega) \in L_{1}(\mathbb{R})$ the inverse Fourier transform is defined by

$$
\check{g}(x):=\mathcal{F}^{-1}(g)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega, \quad x \in \mathbb{R} .
$$

An important Property. $\mathcal{F}\left(f^{\prime}\right)=\mathrm{i} \omega \mathcal{F}(f)$ or shorter $\widehat{\left(f^{\prime}\right)}=i \omega \hat{f}$
An example. For the Gaussian function, $a>0$ we have that (p.534, Kreyszig)

$$
\mathcal{F}\left(\mathrm{e}^{-a x^{2}}\right)=\frac{1}{\sqrt{2 a}} \mathrm{e}^{\frac{-\omega^{2}}{4 a}}
$$

Simplifying the PDE to an ODE "in Fourier Domain"

Using the Fourier transform in space $\mathcal{F}_{x}(u(x, t))=\hat{u}(\omega, t)$ we get

$$
\frac{\partial}{\partial t} \hat{u}(\omega, t)=-c^{2} \omega^{2} \hat{u}(\omega, t)
$$

which is an ODE in time t.
Solution of the ODE. For each ω the solution is given by

$$
\hat{u}(\omega, t)=C(\omega) \mathrm{e}^{-c^{2} \omega^{2} t}
$$

How can we find $C(\omega)$? We still have the initial condition $u(x, 0)=f(x)$.
$\Rightarrow \hat{u}(\omega, 0)=\hat{f}(\omega)=C(\omega) e^{-c^{2} \omega^{2} 0}=C(\omega)$
\Rightarrow Fourier transform the initial condition!
Solution in Fourier Domain.

$$
\hat{u}(\omega, t)=\hat{f}(\omega) \mathrm{e}^{-c^{2} \omega^{2} t}
$$

\Rightarrow Use the inverse Fourier transform to obtain $u(x, t)=\mathcal{F}_{x}^{-1}(\hat{u}(\omega, t))$.

Summary / Roadmap to solve the Heat Equation on \mathbb{R}

To solve

$$
\begin{aligned}
\frac{\partial}{\partial t} u & =c^{2} \frac{\partial^{2}}{\partial x^{2}} u, & & x \in \mathbb{R}, t \geq 0 \\
u(x, 0) & =f(x) & & \text { (Initial Condition) } \\
\lim _{x \rightarrow \pm \infty} u(x, t) & =0, & & \text { (Boundary Conditions) }
\end{aligned}
$$

1. use the Fourier transform $\hat{u}(\omega, t)$ to "turn" the second derivative (in space x) into a multiplication in frequency ω
2. use the initial condition to obtain $\hat{u}(\omega, t)=\hat{f}(\omega) \mathrm{e}^{-c^{2} \omega^{2} t}$
3. use the inverse Fourier transform \mathcal{F}_{x}^{-1} obtain $u(x, t)$

Even better!

In Step 2 we have a multiplication $\hat{f}(\omega) \cdot \mathrm{e}^{-c^{2} \omega^{2} t}$ in frequency!
\Rightarrow We have a convolution in space!

The overall solution $u(x, t)$
We derived from $\hat{g}(\omega)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-c^{2} \omega^{2} t}$ that

$$
g(x)=\frac{1}{2 c^{2} t} \cdot \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{4 c^{2} t}}
$$

and hence

$$
u(x, t)=(f * g)(x)=\frac{1}{2 c \sqrt{\pi t}} \int_{-\infty}^{\infty} f(y) \mathrm{e}^{-\frac{(x-y)^{2}}{4 c^{2} t}} \mathrm{~d} y
$$

Example. Let's set $c=1$ and choose a specific f. That is, we want to solve

$$
\begin{array}{rlrl}
\frac{\partial}{\partial t} u & =\frac{\partial^{2}}{\partial x^{2}} u, & & x \in \mathbb{R}, t \geq 0 \\
u(x, 0) & =f(x)=\left\{\begin{array}{cc}
1 & \text { if }|x| \leq 1 \\
0 & \text { else, }
\end{array}\right. & \text { (Initial Condition) }
\end{array}
$$

