

TMA4125 Matematikk 4N

Numerics for PDEs II

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

March 10, 2023

Numerical Methods for PDEs – Overview

Goal. Solve a Partial Differential Equation (PDE) numerically.

Approach. We will use finite difference methods.

Roughly speaking these consist of

- **1.** Discretize the domain on which the equation is defined.
- **2.** On each grid point:
 - Approximate the involved derivatives by finite differences, using the values in neighbouring grid points.
- **3.** Replace the exact solutions by their approximations.
- **4.** Solve the resulting system of equations.

Numerical Methods for PDEs – Roadmap

- 1. Numerical Differentiation How to discretize derivatives?
- 2. Boundary Value Problems How to tackle boundary conditions?
- **3. Example.** The Heat Equation for some *c*

$$\begin{split} &\frac{\partial}{\partial t}u(x,t)=c^2\frac{\partial^2}{\partial x^2}u(x,t), & 0\leq x\leq L\\ &u(0,t)=g_0(t), \quad u(1,t)=g_1(t), & \text{Boundary conditions}\\ &u(x,0)=f(x) & \text{Initial conditions} \end{split}$$

which we aim to solve for some time interval, that is for $t \in [0, T]$.

This week. Numerical schemes taking into account boundary conditions and stability.

 \Rightarrow we have to figure out how to discretize time and space.

Recap. (Different) Boundary Conditions

To get a unique solution of a BVP (or a PDE): more information required, usually given on the the boundaries

We already learned about the most common boundary conditions

- **1.** Dirichlet conditions. The solution is known at the boundary. We know the temperature $u(0,t) = g_0(t)$ and $u(L,t) = g_L(t)$ on the boundary
- **2.** Neumann conditions. The derivative is known at the boundary. We know the heat flux $\frac{\partial u}{\partial x}(0,t) = g_0(t)$ and $\frac{\partial u}{\partial x}(L,t) = g_L(t)$
- **3.** Robin (or mixed) conditions. A combination of those. We might for example know $a_x u(x,t) + b_x \frac{\partial u}{\partial x}(x,t)$ at x = 0 and x = L

Until now we mostly considered.

Numerical Methods with (zero) Dirichlet boundary conditions.

Recap. Numerical Differentiation

Goal. Numerical approximation of f' and f''.

Approach. Take some step length h > 0 and for

First order. For the first derivative we considered Forward Difference $f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$ Backward Difference $f'(x) = \frac{f(x) - f(x-h)}{h} + O(h)$ Cental Difference $f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$

Second order. Similarly we combine a forward and a backward difference to

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$

A Grid of points

With the discretization of space and time

$$x_i = x_0 + ih, \qquad i = 0, \dots, M, \quad h = \frac{L}{M}$$
$$t_n = t_0 + nk, \qquad n = 0, \dots, N, \quad k = \frac{T}{N}$$

We obtain a grid of points (See sketch).

Idea. We approximate the partial derivatives in the Heat equation as

$$\begin{split} &\frac{\partial}{\partial t}u(x,t)=\frac{u(x,t+k)-u(x,t)}{k}+\mathcal{O}(k) \quad \text{(temporal 1st deriv., fw.)} \\ &\frac{\partial^2}{\partial x^2}u(x,t)=\frac{u(x-h,t)-2u(x,t)-u(x+h,t)}{h^2}+\mathcal{O}(h^2) \quad \text{(spatial 2nd deriv.)} \end{split}$$

but only at our grid points which we denote by $U_i^n \approx u(x_i, t_n)$.

The Explicit Scheme – Forward Euler Method

- **1.** From the initial conditions we know $U_i^0 = u(x_i, 0) = f(x_i)$
- **2.** For each time point $n = 0, 1, 2, \dots$
 - 2.1 We have to take into account the boundary conditions
 - Dirichlet: We have $u(0,t) = g_0(t)$ and $u(L,t) = g_L(t)$
 - ⇒ We can just set $U_0^{n+1} = g_0(t_{n+1})$ and $U_N^{n+1} = g_L(t_{n+1})$ (other BC on the next slide.)

2.2 we compute

$$U_i^{n+1}=U_i^n+lphaig(U_{i-1}^n-2U_i^n+U_{i+1}^nig),$$
 for $i=1,\ldots,N-1$, where $lpha=rac{c^2k}{h^2}$

Neumann Boundary Conditions

If we have

$$rac{\partial u}{\partial x}(0,t)=g_0(t)\qquad ext{ and } rac{\partial u}{\partial x}(L,t)=g_L(t)$$

for two given functions h_0, h_L . What can we do here for the Step 2.1 on the last slide? Use finite differences!

Example. On the left hand side at x = 0 we obtain

$$U_0^{n+1} = U_0^n + 2\alpha(U_1^n - U_0^n + hg_0(t_n))$$

and similarly on the right for x = L we obtain

$$U_M^{n+1} = U_M^n + 2\alpha (U_{M-1}^n - U_M^n + hg_L(t_n))$$

Robin Boundary Conditions

Mixing both the Dirichlet case and the Neumann case we have If we have

$$a_0 \frac{\partial u}{\partial x}(0,t) + b_0 u(0,t) = g_0(t)$$
 and $a_L \frac{\partial u}{\partial x}(L,t) + b_L u(L,t) = g_L(t)$

You can combine the last two cases and obtain

$$U_0^{n+1} = U_0^n + 2\alpha (U_1^n - U_0^n - \frac{hb_0}{a_0}U_0^n + \frac{h}{a_0}g_0(t_n))$$

as well as

$$U_M^{n+1} = U_M^n + 2\alpha (U_{M-1}^n - U_M^n - \frac{hb_L}{a_L}U_M^n + \frac{h}{a_0}g_L(t_n))$$

Matrix Notation – homogen. Neumann BC example 1/2

If we set

$$rac{\partial u}{\partial x}(0,t) = g_0(t) = 0$$
 and $rac{\partial u}{\partial x}(L,t) + b_L u(L,t) == g_L(t) = 0$

we obtain the homogeneous Neumann boundary conditions.

Then our equations look like

$$U_0^{n+1} = U_0^n + 2\alpha (U_1^n - U_0^n)$$

$$U_i^{n+1} = U_i^n + \alpha (U_{i-1}^n - 2U_i^n + U_{i+1}^n), \quad \text{for } i = 1, \dots, M-1$$

$$U_M^{n+1} = U_M^n + 2\alpha (U_{M-1}^n - U_M^n)$$

We can write these nicer using Matrix-Vector notation. We introduce $\mathbf{U}^n = (U_0^n, \dots, U_M^n)^{\mathrm{T}} \in \mathbb{R}^{M+1}$ and similarly \mathbf{U}^{n+1}

Matrix Notation – homogen. Neumann BC Example 2/2

$$A = \begin{pmatrix} -2 & 2 & 0 & \cdots & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -2 & 1 & 0 \\ 0 & \cdots & & \cdots & 0 & 1 & -2 & 1 \\ 0 & \cdots & & \cdots & 0 & 2 & -2 \end{pmatrix} \in \mathbb{R}^{(M+1) \times (M+1)}.$$

and denote by $I_{M+1} \in \mathbb{R}^{(M+1) \times (M+1)}$ be the (M+1)-dimensional identity matrix.

 \Rightarrow We can also write the updates as

$$\mathbf{U}^{n+1} = (I_{M+1} + \alpha A)\mathbf{U}^n.$$

Let's look at this in an example in code

11

(In)Stability

Idea (informally). We want to avoid, that the solution "explodes".

Naming
$$Q\coloneqq (I_{M+1}+lpha A)$$
 and using $\mathbf{U}^0=ig(f(x_0,\ldots,f(x_M)ig)^{\mathrm{T}}$ we get $\mathbf{U}^{n+1}=Q^{n+1}\mathbf{U}^0$

 \Rightarrow the largest "scaling" the matrix Q introduces has to be less than one. This corresponds to considering the largest Eigenvalue.

We obtain that for Stability we need $\alpha = \frac{c^2k}{h^2} \leq \frac{1}{2}$ \Rightarrow If we want to take half the step size ($\frac{h}{2}$) in space, we have to take $\frac{k}{4}$ stepsize in time to still get the same α .

Or more drastically, if we want to increase the time resolution to $\frac{h}{10}$, we have to take $\frac{k}{100}$ in time!

Implicit Euler Method

Idea. Take a backwards difference in time instead.

We obtain

$$U_i^{n+1} - c^2 \frac{k}{h^2} \left(U_{i+1}^{n+1} - 2U_i^{n+1} + U_{i-1}^{n+1} \right) = U_i^n$$

where we do not get an explicit formula for each U_i^{n+1} but an implicit one, where these new values (on the left) depend on each other.

We shorten again $\alpha = c^2 \frac{k}{h^2}$.

We again consider first Dirichlet boundary conditions. and obtain

$$U_1^{n+1} - \alpha (U_2^{n+1} - 2U_1^{n+1}) = U_1^n - \alpha g_0(t_{n+1})$$
$$U_{M-1}^{n+1} - \alpha (U_{M-2}^{n+1} - 2U_{M-1}^{n+1}) = U_{M-1}^n - \alpha g_L(t_{n+1})$$

Implicit Euler Method (Dirichlet BC) in Matrix Form

Using the matrix $B \in \mathbb{R}^{M-1 \times M-1}$ and the mathbftor $\mathbf{b}^{n+1} \in \mathbb{R}^{M-1}$ given by

$$B = \begin{pmatrix} -2 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -2 & 1 & 0 \\ 0 & \cdots & & \cdots & 0 & 1 & -2 & 1 \\ 0 & \cdots & & \cdots & 0 & 1 & -2 \end{pmatrix} \quad \text{and} \quad \mathbf{b}^{n+1} = \begin{pmatrix} g_0(t_{n-1}) \\ 0 \\ 0 \\ \vdots \\ 0 \\ g_L(t_{n-1}) \end{pmatrix}$$

and the identity I_{M-1} as before, we can write the equations for $\mathbf{U}^{n+1} = (u_1^{n+1}, \dots, U_{M-1}^{n+1})^{\mathrm{T}}$ as $(I_{M-1} - \alpha B)\mathbf{U}^{n+1} = \mathbf{U}^n + \alpha \mathbf{U}^{n+1}$

 \Rightarrow This is a linear system of equations \Rightarrow Gaussian elimination - but since it's tridiagonal, even faster methods available ($\mathcal{O}(M)$)

Implicit Euler with Neumann BC

For Neumann boundary conditions we (again) have

$$\partial_x u(0,t) = g_0(t),$$
 and $\partial_x u(L,t) = g_L(t).$

 \Rightarrow Same approach as before (with detour via U_{-1}^{n-1} and U_{M+1}^{n+1}) yields

$$U_0^{n+1} - 2\alpha (U_1^{n+1} - U_0^{n+1}) = U_0^n + 2\alpha hg_0(t_{n+1}),$$

$$U_i^{n+1} - \alpha (U_{i-1}^{n+1} - 2U_i^{n+1} + U_{i+1}^{n+1}) = U_i^n, \quad \text{for } i = 1, \dots, M-1,$$

$$U_M^{n+1} - 2\alpha (U_{M-1}^{n+1} - U_M^{n+1}) = U_M^n - 2\alpha hg_L(t_{n+1}).$$

 $\Rightarrow \text{ To capture the two highlighted terms, we introduce}$ $\mathbf{a}^{n+1} = \left(g_0(t_{n+1}), 0, 0, \dots, 0, -g_L(t_{n+1})\right)^{\mathrm{T}}.$ To obtain $\mathbf{U}^{n+1} = (U_0^{n+1}, \dots, U_M^{n+1})^{\mathrm{T}}$: Using A from before we get

$$(I_{M+1} - \alpha A)\mathbf{U}^{n+1} = \mathbf{U}^n + 2\alpha h\mathbf{a}^{n+1}.$$

 \Rightarrow again a tridiagonal system \Rightarrow efficiently solvable,

Implicit Euler – Remarks

- The computations are only slightly more costly than for Explicit Euler
- ► The method is unconditionally stable
- \Rightarrow in principle we can use arbitrarily large step sizes
- in practice: For accuracy still small step sizes required (just their ratio in α not so important)

Approximation Errors. We used were

- $\mathcal{O}(h^2)$ in space (second order difference)
- $\mathcal{O}(k)$ in time (backward difference)
- \Rightarrow to reduce the error by a factor $\frac{1}{4}$: we require $\frac{k}{4}$ but only $\frac{h}{2}$.

Or informally: k has to "behave like" h^2 .

Crank-Nicolson Method

Idea. Combine Explicit and Implicit Euler Methods.

For example for Neumann boundary conditions, both methods read

$$\mathbf{U}^{n+1} = (I_{M+1} + \alpha A)\mathbf{U}^n + 2\alpha h\mathbf{a}^n$$
$$(I_{M+1} - \alpha A)\mathbf{U}^{n+1} = \mathbf{U}^n + 2\alpha h\mathbf{a}^{n+1},$$

Approach. Take the average of both. We get (remember that here $\mathbf{U}^{n+1} \in \mathbb{R}^{M+1}$, includes U_0^{n+1}, U_M^{n+1})

$$\left(I_{M+1} - \frac{\alpha}{2}A\right)\mathbf{U}^{n+1} = \left(I_{M+1} + \frac{\alpha}{2}A\right)\mathbf{U}^n + \alpha h\left(\mathbf{a}^n + \mathbf{a}^{n+1}\right).$$

Similarly for Dirichlet. taking the average we get (remember that here $\mathbf{U}^{n+1} \in \mathbb{R}^{M-1}$ does not include the boundary)

$$\left(I_{M-1} - \frac{\alpha}{2}B\right)\mathbf{U}^{n+1} = \left(I_{M-1} + \frac{\alpha}{2}B\right)\mathbf{U}^n + \frac{\alpha}{2}\left(\mathbf{b}^n + \mathbf{b}^{n+1}\right).$$

Crank-Nicolson Method

The overall algorithm includes

- Choosing stepsizes $h = \frac{L}{M}$, $k = \frac{T}{N}$
- Setting up U_i^0
- Setting up A (or B depending on the BC)
- iterating the updates from last slide for n = 0, 1, 2, ...

Numerical Cost. The cost is only slightly higher than for the implicit Euler Method. **Numerical Error.** The numeical error is of order $O(h^2 + k^2)$.

Modelling very (very) long bars

D NTNU

The Heat Equation on the Real line.

Motivation / Model Problem. Consider the Heat equation, L, c > 0, with zero Dirichlet BC

$$\begin{split} &\frac{\partial}{\partial t}u=c^2\frac{\partial^2}{\partial x^2}u,\\ &u(x,0)=f(x)\\ &u(-\frac{L}{2},t)=u(\frac{L}{2},t)=0 \end{split}$$

$$-rac{L}{2} \leq x \leq rac{L}{2}, t \geq 0$$

(Initial Condition)
(Boundary Conditions)

What if we let L tend to ∞ ?

The infinite wire.

x

$$\frac{\partial}{\partial t}u = c^2 \frac{\partial^2}{\partial x^2}u, \qquad x \in u(x,0) = f(x) \qquad \text{(In}$$
$$\lim_{x \to \pm \infty} u(x,t) = 0, \qquad \text{(Be}$$

 $x\in \mathbb{R}, t\geq 0$

(Initial Condition) (Boundary Conditions)

 \Rightarrow We use the Fourier Transform!

Recap. The Fourier Transform.

For $f \in L_1(\mathbb{R})$, the Fourier Transform is defined by

$$\hat{f}(\omega) \coloneqq \mathcal{F}(f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i}\omega x} \, \mathrm{d}x, \qquad \omega \in \mathbb{R}.$$

And for a function $g(\omega) \in L_1(\mathbb{R})$ the inverse Fourier transform is defined by

$$\check{g}(x) \coloneqq \mathcal{F}^{-1}(g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\omega) \mathrm{e}^{\mathrm{i}\omega x} \, \mathrm{d}\omega, \qquad x \in \mathbb{R}.$$

An important Property. $\mathcal{F}(f') = i\omega \mathcal{F}(f)$ or shorter $\widehat{(f')} = i\omega \hat{f}$

An example. For the Gaussian function, a > 0 we have that (p.534, Kreyszig)

$$\mathcal{F}(\mathrm{e}^{-ax^2}) = \frac{1}{\sqrt{2a}} \mathrm{e}^{\frac{-\omega^2}{4a}}$$

NTNU

D NTNU

Simplifying the PDE to an ODE "in Fourier Domain"

Using the Fourier transform in space $\mathcal{F}_x(u(x,t)) = \hat{u}(\omega,t)$ we get

$$\frac{\partial}{\partial t}\hat{u}(\omega,t) = -c^2\omega^2\hat{u}(\omega,t)$$

which is an ODE in time t.

Solution of the ODE. For each ω the solution is given by

$$\hat{u}(\omega, t) = C(\omega) \mathrm{e}^{-c^2 \omega^2 t}$$

How can we find $C(\omega)$? We still have the initial condition u(x,0) = f(x). $\Rightarrow \hat{u}(\omega,0) = \hat{f}(\omega) = C(\omega)e^{-c^2\omega^2 0} = C(\omega)$ \Rightarrow Fourier transform the initial condition!

Solution in Fourier Domain.

$$\hat{u}(\omega, t) = \hat{f}(\omega) \mathrm{e}^{-c^2 \omega^2 t}$$

 \Rightarrow Use the inverse Fourier transform to obtain $u(x,t) = \mathcal{F}_x^{-1}(\hat{u}(\omega,t))$.

Summary / Roadmap to solve the Heat Equation on $\mathbb R$ To solve

$$\begin{split} \frac{\partial}{\partial t} u &= c^2 \frac{\partial^2}{\partial x^2} u, \qquad & x \in \mathbb{R}, t \ge 0\\ u(x,0) &= f(x) \qquad & \text{(Initial Condition)}\\ \lim_{x \to \pm \infty} u(x,t) &= 0, \qquad & \text{(Boundary Conditions)} \end{split}$$

- 1. use the Fourier transform $\hat{u}(\omega, t)$ to "turn" the second derivative (in space x) into a multiplication in frequency ω
- **2.** use the initial condition to obtain $\hat{u}(\omega, t) = \hat{f}(\omega) \mathrm{e}^{-c^2 \omega^2 t}$
- **3.** use the inverse Fourier transform \mathcal{F}_x^{-1} obtain u(x,t)

Even better!

In Step 2 we have a multiplication $\hat{f}(\omega) \cdot e^{-c^2 \omega^2 t}$ in frequency! \Rightarrow We have a convolution in space!

The overall solution u(x, t)We derived from $\hat{g}(\omega) = \frac{1}{\sqrt{2\pi}} e^{-c^2 \omega^2 t}$ that

$$g(x) = \frac{1}{2c^2t} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{4c^2t}}$$

and hence

$$u(x,t) = (f * g)(x) = \frac{1}{2c\sqrt{\pi t}} \int_{-\infty}^{\infty} f(y) e^{-\frac{(x-y)^2}{4c^2t}} dy$$

Example. Let's set c = 1 and choose a specific f. That is, we want to solve

> $\frac{\partial}{\partial t}u = \frac{\partial^2}{\partial x^2}u,$ $x \in \mathbb{R}, t \geq 0$ $u(x,0) = f(x) = \begin{cases} 1 & \text{if } |x| \le 1\\ 0 & \text{else,} \end{cases}$ (Initial Condition)