Numerics for the wave equation
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(Brief) introduction/motivation

A wave is a propagating dynamic disturbance.

Waves are of particular interest:
» Seismic waves, oscillating stresses,
» Surface waves, aeroacoustics,

» Particle movement/excitation,

> etc.

Great entry-point to numerical methods, great transition to non-linear problems.




The wave equation

The wave equation reads:

o%u d%u
oz =Cg. fort>0,2€(0.L),
u:()7 fort>0,33:07La
u=f(z), fort=0,2€(0,L),
ou

—_— = = L
5 g(x) fort=0,2 € (0,L),

where u(z,t) is the position of the wave at this space and time and c is the
wave velocity and has been fixed.




Finite Differences

Considering a discretised computational domain with characteristic sizes h and
At in space and time, respectively, we can write the central differencing (CD)
schemes:

u  u(z + h,t) — 2u(x,t) +u(x — h,t)

pye 2 + O(h?)

%

Pu _ulz,t+ At) = 2u(z, t) + uz, t — At)
ot? At2

+ O(A?)
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Finite difference scheme of the wave equation

Transferring the schemes in the wave equation we get:

el I
Az? ot Az?
where i notes the position in space (z) and n the position in time (¢). In this
equation UZ»”Jrl is the unknown at position x; = z, + 1Az and time-step
tnt1 = to + (n 4+ 1AL

If o = %‘; we can rewrite (1) as follows:

U +U4), (D)

2A2 2A2
Uﬁ“:—U{L1+2<1—C t) cat

Uttt =—Ur ' +2(1-®) Ul +o® (U + U (2)




Finite difference scheme of the wave equation
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With green we outline the so-called stencil, i.e. a visual representation of the known
values required to compute the unknown. The unknown, Ui”'H, is top-most point of
the stencil. Based on the stencil, we can make a series of observations.




Remarks on explicit/implicit schemes

In the scheme described above, we formulate an equation starting from time-
step t1, or n = 0. From (2) and for any i, we see that all terms required for
the calculation of our U} are known (more on that later). Such schemes are
called explicit. On the contrary, if each unknown Ui”Jrl is dependent on all other
unknowns, it is called an implicit scheme.

Therefore, for explicit schemes, for any time-step t¢,+1, we can loop through all

x; positions and calculate u?“ before moving to time-step t,42 (outer loop).

Such algorithm is called explicit time-marching.




cAt

Remarks on a = 7
T

The number a = %‘; is called the Courant number (might also find it as ¢ in

literature with the convective velocity being a instead of ¢).

The Courant-Friedrichs-Lewy (CFL) condition for explicit time-marching
schemes states that (in our case):

cAt
o = Az < Qerit = 1.

In other words, for a given spatial resolution, there exists a maximum allowable
time-step At.




Remarks on a = %
X

From a rather practical point of view, in order for a model (using our stencil) to
describe the characteristics of a body, moving with speed ¢, at every position in
space, the body cannot move more than Ax over a time-interval At. Otherwise,
we do not have a way to derive information for intermediate positions.

Position Position
t=t0 t=t0+At

. C . C
| | | |
— 1T >
. X
No info on
this position




Remarks on a = %

i
Combining (2) and our mesh, we can see that for & = 1, the solution depends
only on the left and right neighbours. For ae < 1, it depends on all 3 neighbours,
whereas for @ > 1 it becomes unphysical.

Xi,tn+1

At

AX

o = 1, critical w.r.t. Ax

- a=07




Remarks on stencil centred around z;, ¢,

For n = 0, namely, the unknown is U}, we require knowledge of the time-
step t = to — At. These "non-physical" points are called phantom nodes. We
derive information about them from the initial conditions. There are temporal
discretisation schemes that do not require phantom nodes.

From the initial condition %\tzo = g(z) we get:

U7 = U} - 2Atg(x) (3)

Combining (2), (3) and the other IC we get:

012
Ul = (1—a®) fz) + o (f@ic1) + f (i) + Atg(wi). (4)
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Example
At=1, Az=1,c¢=1,L=3, g(x) =0, f(x) = —z(x — 3) and
u(x=0)=0,u(z=L)=0.
The Courant number is a = 1.

From (4) we have:

Ul = % (f(ziz1) + f(zit1))
Ul =050+2)=1

Uy =052+0)=1
For every subsequent time-step we have:

Ut = U (U + UF)
Ul =-2+(0+1)=-1
U=-2+(140)=-1




