Numerics for the wave equation

Mathematics 4N

Vasileios Tsiolakis
March 2, 2023

Outline

- Introduction/Motivation
- The wave equation
- Finite differences

(Brief) introduction/motivation

A wave is a propagating dynamic disturbance.
Waves are of particular interest:

- Seismic waves, oscillating stresses,
- Surface waves, aeroacoustics,
- Particle movement/excitation,
- etc.

Great entry-point to numerical methods, great transition to non-linear problems.

The wave equation

The wave equation reads:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c \frac{\partial^{2} u}{\partial x}, & & \text { for } t>0, x \in(0, L) \\
u & =0, & & \text { for } t>0, x=0, L \\
u & =f(x), & & \text { for } t=0, x \in(0, L) \\
\frac{\partial u}{\partial t} & =g(x) & & \text { for } t=0, x \in(0, L)
\end{aligned}
$$

where $u(x, t)$ is the position of the wave at this space and time and c is the wave velocity and has been fixed.

Finite Differences

Considering a discretised computational domain with characteristic sizes h and Δt in space and time, respectively, we can write the central differencing (CD) schemes:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}}+\mathcal{O}\left(h^{2}\right) \\
& \frac{\partial^{2} u}{\partial t^{2}} \approx \frac{u(x, t+\Delta t)-2 u(x, t)+u(x, t-\Delta t)}{\Delta t^{2}}+\mathcal{O}\left(\Delta t^{2}\right)
\end{aligned}
$$

Finite difference scheme of the wave equation

Transferring the schemes in the wave equation we get:

$$
\begin{equation*}
U_{i}^{n+1}=-U_{i}^{n-1}+2\left(1-\frac{c^{2} \Delta t^{2}}{\Delta x^{2}}\right) U_{i}^{n}+\frac{c^{2} \Delta t^{2}}{\Delta x^{2}}\left(U_{i-1}^{n}+U_{i+1}^{n}\right) \tag{1}
\end{equation*}
$$

where i notes the position in space (x) and n the position in time (t). In this equation U_{i}^{n+1} is the unknown at position $x_{i}=x_{o}+i \Delta x$ and time-step $t_{n+1}=t_{0}+(n+1) \Delta t$.
If $\alpha=\frac{c \Delta t}{\Delta x}$ we can rewrite (1) as follows:

$$
\begin{equation*}
U_{i}^{n+1}=-U_{i}^{n-1}+2\left(1-\alpha^{2}\right) U_{i}^{n}+\alpha^{2}\left(U_{i-1}^{n}+U_{i+1}^{n}\right), \tag{2}
\end{equation*}
$$

Finite difference scheme of the wave equation

With green we outline the so-called stencil, i.e. a visual representation of the known values required to compute the unknown. The unknown, U_{i}^{n+1}, is top-most point of the stencil. Based on the stencil, we can make a series of observations.

Remarks on explicit/implicit schemes

In the scheme described above, we formulate an equation starting from timestep t_{1}, or $n=0$. From (2) and for any i, we see that all terms required for the calculation of our U_{i}^{1} are known (more on that later). Such schemes are called explicit. On the contrary, if each unknown U_{i}^{n+1} is dependent on all other unknowns, it is called an implicit scheme.

Therefore, for explicit schemes, for any time-step t_{n+1}, we can loop through all x_{i} positions and calculate u_{i}^{n+1} before moving to time-step t_{n+2} (outer loop). Such algorithm is called explicit time-marching.

Remarks on $\alpha=\frac{c \Delta t}{\Delta x}$

The number $\alpha=\frac{c \Delta t}{\Delta x}$ is called the Courant number (might also find it as c in literature with the convective velocity being a instead of c).
The Courant-Friedrichs-Lewy (CFL) condition for explicit time-marching schemes states that (in our case):

$$
\alpha=\frac{c \Delta t}{\Delta x} \leq \alpha_{c r i t}=1
$$

In other words, for a given spatial resolution, there exists a maximum allowable time-step Δt.

Remarks on $\alpha=\frac{c \Delta t}{\Delta x}$

From a rather practical point of view, in order for a model (using our stencil) to describe the characteristics of a body, moving with speed c, at every position in space, the body cannot move more than Δx over a time-interval Δt. Otherwise, we do not have a way to derive information for intermediate positions.

Remarks on $\alpha=\frac{c \Delta t}{\Delta x}$

Combining (2) and our mesh, we can see that for $\alpha=1$, the solution depends only on the left and right neighbours. For $\alpha<1$, it depends on all 3 neighbours, whereas for $\alpha>1$ it becomes unphysical.

$$
\begin{aligned}
& \Delta X \\
& \alpha= 1, \text { critical w.r.t. } \Delta x \\
& \alpha=0.7
\end{aligned}
$$

Remarks on stencil centred around x_{i}, t_{0}

For $n=0$, namely, the unknown is U_{i}^{1}, we require knowledge of the timestep $t=t_{0}-\Delta t$. These "non-physical" points are called phantom nodes. We derive information about them from the initial conditions. There are temporal discretisation schemes that do not require phantom nodes.
From the initial condition $\left.\frac{\partial u}{\partial t}\right|_{t=0}=g(x)$ we get:

$$
\begin{equation*}
U_{i}^{-1}=U_{i}^{1}-2 \Delta \operatorname{tg}\left(x_{i}\right) \tag{3}
\end{equation*}
$$

Combining (2), (3) and the other IC we get:

$$
\begin{equation*}
U_{i}^{1}=\left(1-\alpha^{2}\right) f\left(x_{i}\right)+\frac{\alpha^{2}}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i+1}\right)\right)+\Delta t g\left(x_{i}\right) \tag{4}
\end{equation*}
$$

Example

$\Delta t=1, \Delta x=1, c=1, L=3, g(x)=0, f(x)=-x(x-3)$ and $u(x=0)=0, u(x=L)=0$.

The Courant number is $\alpha=1$.
From (4) we have:

$$
\begin{array}{r}
U_{i}^{1}=\frac{1}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i+1}\right)\right) \\
U_{1}^{1}=0.5(0+2)=1 \\
U_{2}^{1}=0.5(2+0)=1
\end{array}
$$

For every subsequent time-step we have:

$$
\begin{aligned}
U_{i}^{n+1}= & \left.-U_{i}^{n-1}+\left(U_{i-1}^{n}+U_{i+1}^{n}\right)\right) \\
& U_{1}^{2}=-2+(0+1)=-1 \\
& U_{2}^{2}=-2+(1+0)=-1
\end{aligned}
$$

