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Outline

I Recap:
I Continuing with D’Alembert’s solution of the wave equation

I The heat equation
I Separation of variables
I Steady 2D heat equation
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Where we left off - D’Alembert’s solution

Starting from the wave equation:

∂2u

∂t2
= c2

∂2u

∂x
for t > 0, x ∈ (0, L),

u = 0 for t > 0, x = 0, L,

u = f(x) for t = 0, x ∈ (0, L),

∂u

∂t
= g(x) for t = 0, x ∈ (0, L),

(1)

we introduce a change of variables

ξ = x+ ct, η = x− ct
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D’Alembert’s solution of the wave equation

Solution is u(ξ, η). We want to express (1) in terms of ξ, η.

Chain rule:
∂

∂x
u(ξ, η) =

∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x

=
∂u

∂ξ
+
∂u

∂η

(2)

Applying the chain rule to the RHS of (2):

∂

∂x

(
∂

∂x
u(ξ, η)

)
=

∂

∂x

(
∂u

∂ξ
+
∂u

∂η

)
=
∂2u

∂ξ2
+ 2

∂2u

∂η∂ξ
+
∂2u

∂η2

(3)
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D’Alembert’s solution of the wave equation

Same process for the temporal term.

Chain rule:
∂

∂t
u(ξ, η) =

∂u

∂ξ

∂ξ

∂t
+
∂u

∂η

∂η

∂t

= c

(
∂u

∂ξ
− ∂u

∂η

) (4)

Applying the chain rule to the RHS of (4)

∂

∂t

(
∂

∂t
u(ξ, η)

)
=

∂

∂t

[
c

(
∂u

∂ξ
− ∂u

∂η

)]
= c2

(
∂2u

∂ξ2
− 2

∂2u

∂η∂ξ
+
∂2u

∂η2

) (5)
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D’Alembert’s solution of the wave equation

Transferring (3) and (5) to (1):

∂2u

∂ξ∂η
= 0 (6)

A solution of the form
u = φ(ξ) + ψ(η)

or in terms of x and t

u = φ(x+ ct) + ψ(x− ct)

is known as D’Alembert’s solution of the wave equation.
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D’Alembert’s solution of the wave equation

Finding the functions φ and ψ:

Let us have a look at the initial conditions.

...

φ(x+ ct) + ψ(x− ct) =
1

2
[f(x+ ct) + f(x− ct)] +

∫ x+ct

x−ct
g(s)ds

We can draw parallels from the solution with separation of variables.
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Derivation of the heat equation

Some notational work and assumptions:

I Let σ be the specific heat and ρ the density of the material of a body.
Isotropic body.

I Heat flows in the direction of decreasing temperature and is proportional to
the temperature gradient, i.e. v = −K∇u.

I Thermal conductivity K is constant (homogeneous material).
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The heat equation

Dirichlet

∂u

∂t
= c2∇2u in Ω× t, t > 0

u(x, t) = 0 on Γ× t
u(x, 0) = f(x) in Ω at t = 0.

(7)

Neumann

∂u

∂t
= c2∇2u in Ω× t, t > 0

∇nu = 0 on Γ× t
u(x, 0) = f(x) in Ω at t = 0.

(8)
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Heat equation (Homogeneous Dirichlet, 1D)

Consider a cable of length L, with temperature u = 0 at each end.

∂u

∂t
= c2

∂2u

∂x2
x ∈ [0, L], t > 0,

u = 0 for x = 0, L and t > 0

u = f(x) for x ∈ (0, L) at t = 0.
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Heat equation (1D)

Assume separable solution field u(x, t) = F (x)G(t)

FĠ = c2F
′′
G

and divide by c2FG to get:

Ġ

c2G
=
F

′′

F
= −p2

Multiplying by the denominators we get 2 conditions:

F
′′

+ p2F = 0

Ġ+ p2c2G = 0
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Heat equation (1D)

Starting from F
′′

+ p2F = 0 and enforcing the BCs:

Fn(x) = sin
nπx

L
, n = 1, 2, . . .

*Note: In case of Neumann BCs:

Fn(x) = cos
nπx

L
, n = 1, 2, . . .

Solving Ġ+ p2c2G = 0 for p = nπ/L:

Gn(t) = Bne
−λ2nt, n = 1, 2, . . .

where λn = cnπ/L.
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Heat equation (1D)

Putting everything together:

un(x, t) = Fn(x)Gn(t) = Bn sin
nπx

L
e−λ

2
nt, n = 1, 2, . . .

eigenfunctions of the problem, for eigenvalues λn = cnπ/L

*Family of solutions of the heat equation, fulfilling the boundary conditions.

Using a linear combination of all possible solutions and enforcing the IC we
evaluate Bn

Bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

**or the coefficients of the odd Fourier functions. In case of Neumann BCs, we
are looking for coefficients of the even Fourier series (a0, a1, . . . , an).
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Steady 2D heat equation
The heat equation in 2 dimensions reads:

∂u

∂t
= c2∇2u = c2

(
∂2u

∂x2
+
∂2u

∂y2

)

However for the steady case ∂u
∂t = 0.

We consider the following Dirichlet conditions.
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Steady 2D heat equation
This time we are considering a separable expression in the form:

u(x, y) = F (x)G(y)

Much like before we end up with two equations:
∂2F

∂x2
+ kF = 0

∂2G

∂y2
− kG = 0

Enforcing left and right BCs (along x axis) we get:

F (x) = Fn(x) = sin
nπ

a
x

and k = (nπ/a)2

We plug k in the second equation and :

G(y) = Gn(y) = An(enπy/a − e−nπy/a) = 2An sinh
nπy

a
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Steady 2D heat equation

If 2An = A?n, we obtain the eigenfunctions

un(x, y) = Fn(x)Gn(y) = A?n sin
nπ

a
x sinh

nπy

a

Summing all eigenfunctions and enforcing the non-zero condition we get:

bn = A?n sinh
nπb

a
=

2

a

∫ a

0
f(x)sin

nπx

a
dx.

Therefore,

A?n =
2

a sinhnπb/a

∫ a

0
f(x)sin

nπx

a
dx.

Compare to the 1-dimensional case.
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