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Where we left off - D’Alembert’s solution

Starting from the wave equation:

0u 5 0%u

@:C% fort >0,z € (0,L),
u=0 fort>0,$:07La (]_)
u=f(z) fort=0,2€(0,L),

% = g(x) fort =0, z € (0, L),

we introduce a change of variables

E=x+ct, n=x—ct




D’Alembert’s solution of the wave equation

Solution is u(&,n). We want to express (1) in terms of £, 7.

Chain rule;

Ou 0§ 4 o du On

0§ dx  Onox 2)
ou @

Applying the chain rule to the RHS of (2):
0 0 (Ou  Ou
3z (o) = 35 (56 ) o
0*u 0*u 82u

= 5e + 25008 * o

0




D’Alembert’s solution of the wave equation

Same process for the temporal term.

Chain rule;
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au(& )
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o€ ot ' On ot

B 8u_8u
=% o)

Applying the chain rule to the RHS of (4)
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D’Alembert’s solution of the wave equation

Transferring (3) and (5) to (1):

0%u
oéan 0 (6)

A solution of the form
u=¢(&) +v(n)

or in terms of z and ¢

u=¢(z+ct) +(xz —ct)

is known as D'Alembert'’s solution of the wave equation.




D’Alembert’s solution of the wave equation

Finding the functions ¢ and ¢:

Let us have a look at the initial conditions.




D’Alembert’s solution of the wave equation

Finding the functions ¢ and ¢:

Let us have a look at the initial conditions.

x+ct

[flx+ct)+ f(x—ct)] + / g(s)ds

r—ct

N

d(x+ct) +Y(x —ct) =

We can draw parallels from the solution with separation of variables.




Derivation of the heat equation

Some notational work and assumptions:

» Let o be the specific heat and p the density of the material of a body.
Isotropic body.

» Heat flows in the direction of decreasing temperature and is proportional to
the temperature gradient, i.e. v = —-KVu.

» Thermal conductivity K is constant (homogeneous material).




The heat equation

Dirichlet Neumann
ZL—CQV% inQxtt>0 (z;:—czVQU inQxtt>0
u(x,t) =0 onT'xt (7) Vaou=0 onI'xt (8)

u(x,0) = f(x) inQatt=0. u(x,0) = f(x) inQatt=0.




Heat equation (Homogeneous Dirichlet, 1D)

Consider a cable of length L, with temperature u = 0 at each end.

\ |
[ |
x=0 x=L

ou  ,0%u

— =" 0,L],t>0

at Caxz .Z'e[, ]7 > 9
u=20 fore =0,Landt >0

u= f(x) forxe(0,L)att=0.




Heat equation (1D)

Assume separable solution field u(z,t) = F(z)G(t)

FG=72F'G
and divide by c2FG to get:
G P
2G - F P

Multiplying by the denominators we get 2 conditions:

F'+p?F =0
G+ p’?G =0




Heat equation (1D)

Starting from F + p?F = 0 and enforcing the BCs:




Heat equation (1D)

Starting from F + p?F = 0 and enforcing the BCs:

Fn($):sin@, n=12,...
L
*Note: In case of Neumann BCs:
F,(z) = cos w, n=1,2,



Heat equation (1D)

Starting from F + p?F = 0 and enforcing the BCs:

Fn($):sin@, n=12,...
L
*Note: In case of Neumann BCs:
F,(z) = cos nLﬂ, n=1,2,

Solving G + p%c*G = 0 for p = nw/L:



Heat equation (1D)

Starting from F + p?F = 0 and enforcing the BCs:

Fn(:v):sin@, n=12,...
L
*Note: In case of Neumann BCs:
F,(z) = cos nLﬂ, n=1,2,

Solving G + p%c*G = 0 for p = nw/L:

where )\, = cnr/L.

Gu(t) = Bpe ™', n=12...



Heat equation (1D)

Putting everything together:

up(x,t) = F(x)Gy(t) = By sin ?6_)\%2 n=12...

eigenfunctions of the problem, for eigenvalues \,, = enn/L

*Family of solutions of the heat equation, fulfilling the boundary conditions.




Heat equation (1D)
E Putting everything together:

up(x,t) = F(x)Gy(t) = By sin ?6_)\%2 n=12...

eigenfunctions of the problem, for eigenvalues \,, = enn/L
*Family of solutions of the heat equation, fulfilling the boundary conditions.

Using a linear combination of all possible solutions and enforcing the IC we
evaluate B,,




Heat equation (1D)

Putting everything together:

up(x,t) = F(x)Gy(t) = By sin ?6_)\%2 n=12...

eigenfunctions of the problem, for eigenvalues \,, = enn/L
*Family of solutions of the heat equation, fulfilling the boundary conditions.

Using a linear combination of all possible solutions and enforcing the IC we
evaluate B,,

/ f(x)sin @d:n

**or the coefficients of the odd Fourier functions. In case of Neumann BCs, we
are looking for coefficients of the even Fourier series (ag, a1, ..., an).




Steady 2D heat equation
The heat equation in 2 dimensions reads:

o 99 o [(0Pu O%u
g VU= <8w2+3y2




Steady 2D heat equation

The heat equation in 2 dimensions reads:

P o S TR Y
g VU= (8w2+8y2

However for the steady case 8“ =0.

We consider the following Dirichlet conditions.

y u=f(x)




Steady 2D heat equation

This time we are considering a separable expression in the form:
u(z,y) = F(z)G(y)

Much like before we end up with two equations:

0°F
g =
s+ RF =0
2
¢ =0

dy




Steady 2D heat equation

This time we are considering a separable expression in the form:
u(z,y) = F(z)G(y)

Much like before we end up with two equations:

0*F

v =
92 + k 0
0’G

I kG =0
Oy>?

Enforcing left and right BCs (along x axis) we get:

F(x) = F,(z) =sin 7%Tar;
and k = (n7/a)?




Steady 2D heat equation

This time we are considering a separable expression in the form:
u(z,y) = F(z)G(y)

Much like before we end up with two equations:

0*F

v =
92 + k 0
0’G

I kG =0
Oy>?

Enforcing left and right BCs (along x axis) we get:
F(x) = F,(z) =sin %Tm

and k = (n7/a)?

We plug k in the second equation and :

G(y) = G (y) = Ap(e"™/® — ¢=m™/2) = 94, sinh =Y
a




Steady 2D heat equation

If 2A,, = A}, we obtain the eigenfunctions

un(z,y) = Fo(2)Gn(y) = A}, sin %x sinh ?




Steady 2D heat equation

If 2A,, = A}, we obtain the eigenfunctions

un(z,y) = Fo(2)Gn(y) = A}, sin "7 ¢ sinh 7Y

a a

Summing all eigenfunctions and enforcing the non-zero condition we get:
n7rb
b, = A}, sinh — / f(z sm—da:

Therefore,

*

A = asmhmrb/a/ f(

nwTT
)sin——dx.
a

Compare to the 1-dimensional case.




