D'Alembert's solution The heat equation
 Mathematics 4 N

Vasileios Tsiolakis
March 3, 2023

Outline

- Recap:
- Continuing with D'Alembert's solution of the wave equation
- The heat equation
- Separation of variables
- Steady 2D heat equation

Where we left off - D'Alembert's solution

Starting from the wave equation:

$$
\begin{align*}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x} & & \text { for } t>0, x \in(0, L) \\
u & =0 & & \text { for } t>0, x=0, L \\
u & =f(x) & & \text { for } t=0, x \in(0, L) \tag{1}\\
\frac{\partial u}{\partial t} & =g(x) & & \text { for } t=0, x \in(0, L)
\end{align*}
$$

we introduce a change of variables

$$
\xi=x+c t, \quad \eta=x-c t
$$

D'Alembert's solution of the wave equation

Solution is $u(\xi, \eta)$. We want to express (1) in terms of ξ, η.
Chain rule:

$$
\begin{align*}
\frac{\partial}{\partial x} u(\xi, \eta) & =\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} \\
& =\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta} \tag{2}
\end{align*}
$$

Applying the chain rule to the RHS of (2):

$$
\begin{align*}
\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} u(\xi, \eta)\right) & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta}\right) \\
& =\frac{\partial^{2} u}{\partial \xi^{2}}+2 \frac{\partial^{2} u}{\partial \eta \partial \xi}+\frac{\partial^{2} u}{\partial \eta^{2}} \tag{3}
\end{align*}
$$

D'Alembert's solution of the wave equation

Same process for the temporal term.
Chain rule:

$$
\begin{align*}
\frac{\partial}{\partial t} u(\xi, \eta) & =\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t} \\
& =c\left(\frac{\partial u}{\partial \xi}-\frac{\partial u}{\partial \eta}\right) \tag{4}
\end{align*}
$$

Applying the chain rule to the RHS of (4)

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\frac{\partial}{\partial t} u(\xi, \eta)\right) & =\frac{\partial}{\partial t}\left[c\left(\frac{\partial u}{\partial \xi}-\frac{\partial u}{\partial \eta}\right)\right] \\
& =c^{2}\left(\frac{\partial^{2} u}{\partial \xi^{2}}-2 \frac{\partial^{2} u}{\partial \eta \partial \xi}+\frac{\partial^{2} u}{\partial \eta^{2}}\right) \tag{5}
\end{align*}
$$

D'Alembert's solution of the wave equation

Transferring (3) and (5) to (1):

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \xi \partial \eta}=0 \tag{6}
\end{equation*}
$$

A solution of the form

$$
u=\phi(\xi)+\psi(\eta)
$$

or in terms of x and t

$$
u=\phi(x+c t)+\psi(x-c t)
$$

is known as D'Alembert's solution of the wave equation.

D'Alembert's solution of the wave equation

Finding the functions ϕ and ψ :
Let us have a look at the initial conditions.

D'Alembert's solution of the wave equation

Finding the functions ϕ and ψ :
Let us have a look at the initial conditions.

$$
\phi(x+c t)+\psi(x-c t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\int_{x-c t}^{x+c t} g(s) d s
$$

We can draw parallels from the solution with separation of variables.

Derivation of the heat equation

Some notational work and assumptions:

- Let σ be the specific heat and ρ the density of the material of a body. Isotropic body.
- Heat flows in the direction of decreasing temperature and is proportional to the temperature gradient, i.e. $\boldsymbol{v}=-K \nabla u$.
- Thermal conductivity K is constant (homogeneous material).

The heat equation

Dirichlet

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =c^{2} \boldsymbol{\nabla}^{2} u & & \text { in } \Omega \times t, t>0 \\
u(\boldsymbol{x}, t) & =0 & & \text { on } \Gamma \times t \\
u(\boldsymbol{x}, 0) & =f(\boldsymbol{x}) & & \text { in } \Omega \text { at } t=0 .
\end{aligned}
$$

Neumann

$$
\begin{align*}
\frac{\partial u}{\partial t} & =c^{2} \boldsymbol{\nabla}^{2} u & & \text { in } \Omega \times t, t>0 \\
\boldsymbol{\nabla}_{n} u & =0 & & \text { on } \Gamma \times t \tag{7}\\
u(\boldsymbol{x}, 0) & =f(\boldsymbol{x}) & & \text { in } \Omega \text { at } t=0 .
\end{align*}
$$

Heat equation (Homogeneous Dirichlet, 1D)

Consider a cable of length L, with temperature $u=0$ at each end.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}} & & x \in[0, L], t>0 \\
u & =0 & & \text { for } x=0, L \text { and } t>0 \\
u & =f(\boldsymbol{x}) & & \text { for } x \in(0, L) \text { at } t=0
\end{aligned}
$$

Heat equation (1D)

Assume separable solution field $u(x, t)=F(x) G(t)$

$$
F \dot{G}=c^{2} F^{\prime \prime} G
$$

and divide by $c^{2} F G$ to get:

$$
\frac{\dot{G}}{c^{2} G}=\frac{F^{\prime \prime}}{F}=-p^{2}
$$

Multiplying by the denominators we get 2 conditions:

$$
\begin{aligned}
F^{\prime \prime}+p^{2} F & =0 \\
\dot{G}+p^{2} c^{2} G & =0
\end{aligned}
$$

Heat equation (1D)

Starting from $F^{\prime \prime}+p^{2} F=0$ and enforcing the BCs:

Heat equation (1D)

Starting from $F^{\prime \prime}+p^{2} F=0$ and enforcing the BCs:

$$
F_{n}(x)=\sin \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

*Note: In case of Neumann BCs:

$$
F_{n}(x)=\cos \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

Heat equation (1D)

Starting from $F^{\prime \prime}+p^{2} F=0$ and enforcing the BCs:

$$
F_{n}(x)=\sin \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

*Note: In case of Neumann BCs:

$$
F_{n}(x)=\cos \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

Solving $\dot{G}+p^{2} c^{2} G=0$ for $p=n \pi / L$:

Heat equation (1D)

Starting from $F^{\prime \prime}+p^{2} F=0$ and enforcing the BCs:

$$
F_{n}(x)=\sin \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

*Note: In case of Neumann BCs:

$$
F_{n}(x)=\cos \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

Solving $\dot{G}+p^{2} c^{2} G=0$ for $p=n \pi / L$:

$$
G_{n}(t)=B_{n} e^{-\lambda_{n}^{2} t}, \quad n=1,2, \ldots
$$

where $\lambda_{n}=c n \pi / L$.

Heat equation (1D)

Putting everything together:

$$
u_{n}(x, t)=F_{n}(x) G_{n}(t)=B_{n} \sin \frac{n \pi x}{L} e^{-\lambda_{n}^{2} t}, \quad n=1,2, \ldots
$$

eigenfunctions of the problem, for eigenvalues $\lambda_{n}=c n \pi / L$
*Family of solutions of the heat equation, fulfilling the boundary conditions.

Heat equation (1D)

Putting everything together:

$$
u_{n}(x, t)=F_{n}(x) G_{n}(t)=B_{n} \sin \frac{n \pi x}{L} e^{-\lambda_{n}^{2} t}, \quad n=1,2, \ldots
$$

eigenfunctions of the problem, for eigenvalues $\lambda_{n}=c n \pi / L$
*Family of solutions of the heat equation, fulfilling the boundary conditions. Using a linear combination of all possible solutions and enforcing the IC we evaluate B_{n}

Heat equation (1D)

Putting everything together:

$$
u_{n}(x, t)=F_{n}(x) G_{n}(t)=B_{n} \sin \frac{n \pi x}{L} e^{-\lambda_{n}^{2} t}, \quad n=1,2, \ldots
$$

eigenfunctions of the problem, for eigenvalues $\lambda_{n}=c n \pi / L$
*Family of solutions of the heat equation, fulfilling the boundary conditions.
Using a linear combination of all possible solutions and enforcing the IC we evaluate B_{n}

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

** or the coefficients of the odd Fourier functions. In case of Neumann BCs, we are looking for coefficients of the even Fourier series $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.

Steady 2D heat equation

The heat equation in 2 dimensions reads:

$$
\frac{\partial u}{\partial t}=c^{2} \nabla^{2} u=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Steady 2D heat equation

The heat equation in 2 dimensions reads:

$$
\frac{\partial u}{\partial t}=c^{2} \nabla^{2} u=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

However for the steady case $\frac{\partial u}{\partial t}=0$.
We consider the following Dirichlet conditions.

Steady 2D heat equation

This time we are considering a separable expression in the form:

$$
u(x, y)=F(x) G(y)
$$

Much like before we end up with two equations:

$$
\begin{aligned}
& \frac{\partial^{2} F}{\partial x^{2}}+k F=0 \\
& \frac{\partial^{2} G}{\partial y^{2}}-k G=0
\end{aligned}
$$

Steady 2D heat equation

This time we are considering a separable expression in the form:

$$
u(x, y)=F(x) G(y)
$$

Much like before we end up with two equations:

$$
\begin{aligned}
& \frac{\partial^{2} F}{\partial x^{2}}+k F=0 \\
& \frac{\partial^{2} G}{\partial y^{2}}-k G=0
\end{aligned}
$$

Enforcing left and right BCs (along \times axis) we get:

$$
F(x)=F_{n}(x)=\sin \frac{n \pi}{a} x
$$

and $k=(n \pi / a)^{2}$

Steady 2D heat equation

This time we are considering a separable expression in the form:

$$
u(x, y)=F(x) G(y)
$$

Much like before we end up with two equations:

$$
\begin{aligned}
& \frac{\partial^{2} F}{\partial x^{2}}+k F=0 \\
& \frac{\partial^{2} G}{\partial y^{2}}-k G=0
\end{aligned}
$$

Enforcing left and right BCs (along \times axis) we get:

$$
F(x)=F_{n}(x)=\sin \frac{n \pi}{a} x
$$

and $k=(n \pi / a)^{2}$
We plug k in the second equation and:

$$
G(y)=G_{n}(y)=A_{n}\left(e^{n \pi y / a}-e^{-n \pi y / a}\right)=2 A_{n} \sinh \frac{n \pi y}{a}
$$

Steady 2D heat equation

If $2 A_{n}=A_{n}^{\star}$, we obtain the eigenfunctions

$$
u_{n}(x, y)=F_{n}(x) G_{n}(y)=A_{n}^{\star} \sin \frac{n \pi}{a} x \sinh \frac{n \pi y}{a}
$$

Steady 2D heat equation

If $2 A_{n}=A_{n}^{\star}$, we obtain the eigenfunctions

$$
u_{n}(x, y)=F_{n}(x) G_{n}(y)=A_{n}^{\star} \sin \frac{n \pi}{a} x \sinh \frac{n \pi y}{a}
$$

Summing all eigenfunctions and enforcing the non-zero condition we get:

$$
b_{n}=A_{n}^{\star} \sinh \frac{n \pi b}{a}=\frac{2}{a} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x .
$$

Therefore,

$$
A_{n}^{\star}=\frac{2}{a \sinh n \pi b / a} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x .
$$

Compare to the 1-dimensional case.

