
N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy TMA4125 Matematikk 4N

Interpolation & Numerical Integration

Ronny Bergmann

Institute of Mathematical Sciences, NTNU.

January 12, 2023

N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy

Polynomial Interpolation

2

Interpolation: basic idea
Often we get some discrete measurement data

(xi, yi), i = 0, . . . , n.

Goal. Find a function f that describes this data, i. e.

f(xi) = yi i = 0, . . . , n,

and that f is from a certain class (smoothness, polynomial,...) – let‘s say
“nice” function

Alternatively. If we have a complicated function g:
take (xi, g(xi)) and find a “nice” function f that “explaines” the
measurements well, since working with f is easier.
⇒ use approach from above.

3

Polynomial interpolation

Task. Given n+ 1 points (xi, yi), i = 0, . . . , n, find a polynomial p(x) of
lowest possible degree satisfying the interpolation condition

p(xi) = yi i = 0, . . . , n.

The solution p(x) is called interpolation polynomial.

The values xi are called nodes, the points (xi, yi) are called interpolation
points.

4

Example of an interpolation problem
For given data
i 0 1 2
xi 0 2

3 1

yi 1 1
2 0

The corresponding interpolation polynomial is

p2(x) =
1

4

(
−3x2 − x+ 4

)
.

The data are sample values of cos(π2x) on [0, 1].

0.25 0.5 0.75 1

0.5

1

x

y
(xi, yi)

p2(x)

cos(π2x)
▶ p2 interpolates the data.
▶ Locally (on [0, 1]):

p2 explains f(x) = cos(π2x)
quite well.

5

Roadmap

We will discuss the following

▶ Method. How to compute the interpolation polynomial?
▶ Existence and uniqueness results
▶ Error analysis. If the polynomial is used to approximate a function,

how good is the approximation?
▶ Improvements. If the nodes xi can be chosen freely, how should

we do it in order to reduce the error?
▶ Splines. What are they and how can we use them?

6

Polynomials: some useful facts

We already learned about

▶ Pn the set of polynomials of degree n or less
▶ Cm[a, b] the set of all continuous functions that have continuous

firstm derivatives

and a polynomial of degree n we denote by pn ∈ Pn written as

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 =

n∑
i=0

cix
i,

where ci ∈ R, i = 0, . . . , n, are some real coefficients.

7

Roots of a polynomial

The value r is a root or zero of a polynomial p if p(r) = 0.

A nonzero polynomial pn of dergree n can never have more than n real
roots (there are maybe less).

A polynomial pn of degree n with n real roots r1, r2, . . . , rn ∈ R can be
written as

pn(x) = c(x− r1)(x− r2) · . . . · (x− rn) = c

n∏
i=1

(x− ri).

8

Direct method

For a polynomial pn of degree n we can write down the interpolation
conditions that

pn(xj) =

n∑
i=0

cix
i
j = yj , for j = 0, . . . , n

has to hold.
These are n+ 1 equations and we have n+ 1 unknowns c0, c1, . . . , cn.

9

Example

Given the points

i 0 1 2 3 4
xi 0 1 3 4 7
yi 3 8 6 -1 2

find the lowest degree polynomial running through these points, i.e. a
function p(x) with

p(xi) = yi i = 0, . . . , 4

of the form
p(x) = c4x

4 + c3x
3 + c2x

2 + c1x+ c5.

10

Direct Method: Notes and challenge.
For given data (xi, yi), i = 0, . . . , n:

▶ the matrix we just constructed is called the Vandermonde matrix V

V =


1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
1 xn−1 x2n−1 · · · xnn−1

1 xn x2n · · · xnn


▶ V is always of full rank
▶ But: V is ill-conditioned, that is

1. shifting the nodes to x̃i = 100 + xi we get x̃4 = 107.
⇒ bottom left entry: 1074 = 131079601 ⇒ rounding errors!

2. if two nodex xi, xj are close together
⇒ small errors amplify!

11

A Remedy. “Rescale” to [−1, 1]

1. Transfer the nodes from [a, b], a = mini xi, b = maxi xi
to the “nicer” interval [−1, 1]:

xi =
a+ b

2
+ ti

b− a

2
and ti =

2

b− a
xi −

b+ a

b− a
.

2. with (ti, yi) interpolate q(t) (“lives” on [−1, 1])
3. Use the formula from above to get p(x) on [a, b]:

p(x) = q(t) = q
(2

b− a
x− b+ a

b− a

)

We avoid the too large numbers, since all ti ∈ [−1, 1]
But the problem if two nodes are close persists.

12

Existence and uniqueness of interpolation polynomials

We have already proved the existence of such polynomials, simply by
constructing them. But are they unique? The answer is yes!

Theorem. (Existence and uniqueness.)
Given n+1 points (xi, yi)ni=0 with distinct x values. Then there is one and
only one polynomial pn(x) ∈ Pn satisfying the interpolation condition

pn(xi) = yi, i = 0, . . . , n.

Proof.
Suppose there exist two different interpolation polynomials pn and qn
of degree n interpolating the same n+ 1 points. The polynomial
r(x) = pn(x)− qn(x) is of degree n with zeros in all the nodes xi, that is a
total of n+ 1 zeros. But then r ≡ 0, and the two polynomials pn and qn
are identical.

13

Outlook: Lagrange interpolation
Given n+ 1 points (xi, yi), i = 0, . . . , n, with distinct values of xi.

The cardinal functions or Lagrange functions ℓi, i = 0, . . . , n, are given by

ℓi(x) :=

n∏
j=0
j ̸=i

x− xj
xi − xj

=
x− x0
xi − x0

· x− x1
xi − x1

· . . . · x− xi−1

xi − xi−1
· x− xi+1

xi − xi+1
· . . . · x− xn

xi − xn

You will investigate their properties, e.g.
▶ ℓi ∈ Pn for i = 0, . . . , n

▶ ℓi(xj) = δij =

{
1 when i = j,

0 else
▶ they are constructed solely from the nodes xi (no yi involved)
▶ We obtain the interpolation polynomial directly by

pn(x) =
n∑

i=0

yiℓi(x)

14

Sketch: Error Analysis
1. Given some function f ∈ Cn+1[a, b].
2. Choose n+ 1 distinct nodes xi in [a, b], i = 0, . . . , n

3. compute pn(x) ∈ Pn to interpolate f

pn(xi) = f(xi), i = 0, . . . , n.

Error Analysis. What can be said about the error e(x) = f(x)− pn(x)?
Theorem (without proof)
Given f ∈ C(n+1)[a, b], pn ∈ Pn and xi ∈ [a, b], i = 0, . . . , n as above.
Then, for each x ∈ [a, b], there exists one ξ(x) ∈ (a, b) such that

f(x)− pn(x) =
f (n+1)(ξ(x))

(n+ 1)!

n∏
i=0

(x− xi).

Goals. Find upper bound for max
x∈[a,b]

f (n+1)(n). and choose good xi!

15

Splines: Motivation

a flat spline mainly used in shipbuilding. (source: wikipedia/flat spline)

https://en.wikipedia.org/wiki/Flat_spline

16

Splines: Definition
Let ∆ = [x0, . . . , xn] be an ordered set of points in [a, b] with

a = x0 < x1 < · · · < xn−1 < xn = b

and k ∈ N. A spline of degree k relative to ∆ is a function sk : [a, b] → R
such that

1. sk
∣∣
[xj ,xj+1]

∈ Pk is a polynomial of degree ≤ k for j = 0, . . . , n− 1

2. sk ∈ C(k−1)([a, b])

Note. These functions form a vector space Sk,∆.

For k = 1 we speak of linear splines,
for k = 2 of quadratic splines, and
for k = 3 of cubic splines.

17

Example: Linear splines, degree k = 1
The “pieces” s1

∣∣
[xj ,xj+1]

are linear functions and s1 to be in C0([a, b]).
We can derive a basis of S1,∆, the so-called “hat-functions”

Λi(x) =


x−xi−1

xi−xi−1
if xi−1 ≤ x < xi,

xi+1−x
xi+1−xi

if xi ≤ x < xi+1,

0 else,
i = 1, . . . , n− 1

and at the voundary we need Λ0 and Λn to be “half-hats”

Λ0(x) =

{
x1−x
x1−x0

if x0 ≤ x < x1

0 else,
and Λn(x) =

{
x−xn−1

xn−xn−1
if xn−1 ≤ x < xn,

0 else.

⇒ to interpolate data (xi, yi), i = 0, . . . , n, on ∆:

s1(x) =

n∑
i=0

yiΛi(x)

18

Cubic Splines & degrees of freedom

Splines of degree 3. Are the so called cubic splines s3(x). These are
very widely used, e.g. in CAD.
On each interval we have a polynomial of degree 3:

s3(x) = ci,0 + ci,1x+ ci,2x
2 + ci,3x

3, x ∈ [xi, xi+1)

But We can not choose them completely arbitrary,
since s3 has to be twice continously differentiable, s3 ∈ C2([a, b])
⇒ at every inner node x1, . . . , xn−1:
3 conditions⇒ 3(n− 1) conditions in total.

So how many degrees of freedom are left?

We have 4n coefficients, that have to satifsy 3(n− 1) conditions
⇒ S3,∆ has a dimension of 4n− 3(n− 1) = n+ 3

19

Cubic Splines: Boundary Conditions (BC)
Motivation.
m+ 1 interpolation conditions s3(xi) = yi and dimensionm+ 3
⇒ 2 degrees of freedom / choices left.

Natural BC We require s′′3(x0) = 0 and s′′3(xn) = 0
⇒ Spline has no curvature at the boundary

Clamped BC We require s′3(x0) = 0 and s′′3(xn) = 0
⇒ horizontal tangents at the ends
only useful if our function has this property, otherwise
might look “odd”.

not-a-knot BC remove x1 and xn−1 from the grid, i.e.
Use ∆̃ = [x0, x2, x3, . . . , xn−3, xn−2, xn] for the interpolation
(m+ 1 degrees of freedom left),
we still require s3(x1) = y1 and s3(xn−1) = yn−1 or in other
words, we still considerm+ 1 conditions for interpolation.

N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy

Numerical Integration

20

Introduction.
Imagine you want to compute the (finite) integral

I[f](a, b) :=

∫ b

a
f(x)dx

The “usual” way is to find a primitive function F (also known as
indefinite integral f) satisfying F ′(x) = f(x). Then we can compute∫ b

a
f(x)dx = F (b)− F (a)

Challenge. Computing F analytically might be hard or F might not
have a closed analytical form. For example

f(x) = e−x2 (no elementary function F)

f(x) =
log(2 + sin(12 −

√
x)6)

log(π + arctan(
√

1− exp(−2x− sin(x))))
(complicated)

21

Numerical quadrature.
A numerical quadrature or a quadrature rule is a formula for
approximating I[f](a, b). Quadratures are usually of the form

Q[f](a, b) =

n∑
i=0

wif(xi),

where xi, wi, i = 0, 1, . . . , n, are the nodes (points) and the weights of the
quadrature rule, respectively.

A quadrature rule Q[f](a, b) is defined by its quadrature nodes {xi}ni=0

and weights {wi}ni=0

▶ If f is given from the context, we write just short I(a, b) and Q(a, b).
▶ quadrature rules are linear, i. e. for functions f, g and α, β ∈ R

it holds
Q[αf + βg](a, b) = αQ[f](a, b) + βQ[g](a, b)

22

Known examples.

You already know from Calculus 1:

Mid point rule. The mid point rule is the simplest possible rule

M [f](a, b) := w0f(x0) = (b− a)f
(a+ b

2

)
The only node is the mid point x0 = a+b

2 with weight w0 = b− a.
Note. Instead of Q we use specific letters for these quadrature rules.

22

Known examples.

You already know from Calculus 1:

Trapezoidal rule. We use both boundaries to form a trapezoid.

T [f](a, b) := w0f(x0) + w1f(x1) = (b− a)f
(f(a) + f(b)

2

)
So here we have x0 = a, x1 = b and w0 = w1 =

b−a
2 .

Note. Instead of Q we use specific letters for these quadrature rules.

22

Known examples.

You already know from Calculus 1:

Simpson rule. We use all 3 nodes from before

S[f](a, b) := w0f(x0)+w1f(x1)+w2f(x2) =
b− a

6

(
f(a)+4f

(a+ b

2

)
+f(b)

)
with x0 = a, x1 = a+b

2 , x2 = b and weights w0 = w2 =
b−a
6 and w1 =

2(b−a)
3 .

Note. Instead of Q we use specific letters for these quadrature rules.

23

Roadmap

1. construct the (known) quadratures from integration of
interpolation polynomials

2. error analysis
3. composite quadrature rules – how to “divide and conquer”
4. adaptive quadrature rules – how to “divide cleverly”

24

Quadrature from integrating interpolation polynomials
Recap. Choose n+ 1 distinct nodes x0, . . . , xn in the interval [a, b].
Denote by pn the interpolation polynomial satisfying the interpolation
conditions

pn(xi) = f(xi), i = 0, . . . , n.

Idea. Integrating polynomials is easy!

⇒ Use
∫ b

a
pn(x)dx as an approximation to

∫ b

a
f(x)dx.

We consider the quadrature

I[f](a, b) ≈ Q[f](a, b) :=

∫ b

a
pn(x)dx.

But what about the weights?

25

Weights for the quadrature based on pn
To compute the weights we use the Lagrange form:

pn(x) =

n∑
i=0

f(xi)ℓi(x), where ℓi(x) =

n∏
j=0
j ̸=i

x− xj
xi − xj

, i = 0, . . . , n

Due to linearity of the integral we get for the weights wi

Q[f](a, b) =

∫ b

a
pn(x)dx =

∫ b

a

n∑
i=0

f(xi)ℓi(x)dx

=

n∑
i=0

f(xi)

∫ b

a
ℓi(x)dx =

n∑
i=0

f(xi)wi

So the weights are simply computed as

wi =

∫ b

a
ℓi(x)dx, i = 0, . . . , n,

and are independent of f .

26

Degree of precision

Definition. A numerical quadrature has degree of precision d if

Q[p](a, b) = I[p](a, b) for all p ∈ Pd

and there is at least one p ∈ Pd+1 such that Q[p](a, b) ̸= I[p](a, b).

Since both integrals and quadratures are linear, the degree of precision
is d if

I[xj](a, b) = Q[xj](a, b), j = 0, . . . , d

I[xd+1](a, b) ̸= Q[xd+1](a, b).

27

Let’s revisit: The trapezoidal rule
If we want to approximate

I(0, 1) =

∫ 1

0
cos
(π
2
x
)
=

2

π
= 0.636619

We can derive the Trapezoidal rule by the polynomial interpolation
approach.

As a result we obtain

T (0, 1) =
1

2

(
f(0) + f(1)

)
=

1

2

with an error of
I(0, 1)− T (0, 1) ≈ 0.138

and a degree of precision equal to 1.

28

Transfer the formula from [−1, 1] to [a, b]

What if we have different intervals to tackle, say [a, b] and [c, d]?

Construct your method on a reference interval Î = [−1, 1], determine
your quadrature points {ti}ni=0 and weights {vi}ni=0 (from Lagrange).

Use the transformation (cf. slide11)

x =
b− a

2
t+

b+ a

2
so dx =

b− a

2
dt

and thus we define the points {xi}ni=0 and weights {wi}ni=0 for [a, b] as

xi =
b− a

2
ti +

b+ a

2
, wi =

b− a

2
vi for i = 0, . . . , n.

Note. It is enough to store the weights vi on [−1, 1] and compute the
transform for any given interval.

29

Example: Simpson’s rule
Simpson’s rule on [−1, 1] uses the nodes t0 = −1, t1 = 0 and t2 = 1.
With the cardinal functions

ℓ0(t) =
1

2
(t2 − t), ℓ1(t) = 1− t2, ℓ2(t) =

1

2
(t2 + t).

We get the weights

w0 =

∫ 1

−1
ℓ0(t)dt =

1

3
, w1 =

∫ 1

−1
ℓ1(t)dt =

4

3
, w2 =

∫ 1

−1
ℓ2(t)dt =

1

3

such that∫ 1

−1
f(t)dt ≈

∫ 1

−1
p2(t)dt =

2∑
i=0

wif(ti) =
1

3

(
f(−1) + 4f(0) + f(1)

)
.

The transformation yields the points x0 = a, x1 = b+a
2 , x2 = b and we get

S(a, b) =
b− a

6

(
f(a) + 4f

(b+ a

2

)
+ f(b)

)
.

30

Quadrature in Practice: Divide and Conquer
In the following, you will learn the steps on how to construct realistic
algorithms for numerical integration, similar to those used in software
like Matlab or SciPy/NumPy. The steps are:

1. Choose n+ 1 distinct nodes on a standard interval [−1, 1].
2. Let pn(x) be the polynomial interpolating some general function f

in the nodes, and let the Q[f](−1, 1) = I[pn](−1, 1).
3. Transfer the formula Q from [−1, 1] to some interval [a, b].
4. Find the composite formula, by dividing the interval [a, b] into

subintervals and applying the quadrature formula on each
subinterval.

5. Find an expression for the error E[f](a, b) = I[f](a, b)−Q[f](a, b).
6. Find an expression for an estimate of the error, and use this to

create an adaptive algorithm.

31

Improving a quadrature rule by compositon

To generate more accurate quadrature rules Q[f](a, b) we have in
principle two possibilities

▶ Increase the order of the interpolation polynomial used to
construct Q(a, b).

▶ Subdivide the interval [a, b] into smaller subintervals and apply a
quadrature rule on each of the subintervals, leading to Composite
Quadrature Rules.

32

Composite quadrature rules

For a composite quadrature rule selectm ≥ 2
and divide [a, b] intom equispaced subintervals

[xi−1, xi], i = 1, . . . ,m,

where xi = a+ ih, 0 = 1, . . . ,m, and h =
b− a

m
.

Then for a given quadrature rule Q[·](xi−1, xi) and define the composite
quadrature rule by∫ b

a
f(x)dx ≈ Qm(f)([xi−1, xi]

m
i=1) :=

m∑
i=1

Q[f](xi−1, xi)

33

Composite Simpson’s rule
Idea. Split [a, b] intom subintervals, do Simpson’s rule on each.
⇒ we also need the mid points. So:

Divide [a, b] into 2m equal intervals of length h = (b− a)/(2m).
Let xj = a+ jh, i = 0, · · · , 2m, and apply Simpson’s rule on each
subinterval [x2j , x2j+2] (with nodes x2j , x2j+1, x2j+2). We get∫ b

a
f(x)dx =

m−1∑
j=0

∫ x2j+2

x2j

f(x)dx ≈ Sm(a, b) :=

m−1∑
j=0

S(x2j , x2j+2)

Plugging in all small Simpson’s rules we get

Sm(a, b) :=
m−1∑
j=0

h

3

(
f(x2j) + 4f(x2j+1) + f(x2j+2)

)

=
h

3

(
f(x0) + 4

m−1∑
j=0

f(x2j+1) + 2

m−1∑
j=1

f(x2j) + f(x2m)

)

34

Numerical Example for Composite Simpson’s rule
We again consider f(x) = cos

(
πx
2

)
.

Intuitively.
If we spend more points, the error should decrease.
But: How much does it decrease – or in other words – how fast?

From the experiment we observe that the error is reduced by a factor
of approx. 0.0625 = 1

16 when doubling the number of subintervalsm.

Two interpretations:
In number of pointsm. If we write Em(a, b) = |I(a, b)− Sm(a, b)|, then

1

16
Em(a, b) ≈ E2m(a, b)

In step size h = b−a
m . We have 16 = 24 so the error has to behave like a

constant C times h4, since

C
(h
2

)4
=

C

24
h4 =

C

16
h4

In the following, we will prove that this is in fact what can be expected.

35

Obtaining Error bounds for Composite Quadratures

Recap. We know the error bounds for the Quadrature of f ∈ C4[a, b]:

▶ Trapezoidal rule T (a, b)− I(a, b) =
(b− a)3

12
f ′′(ξ) for some ξ ∈ (a, b)

▶ Simpson rule S(a, b)− I(a, b) = −(b− a)5

2880
f (4)(ξ) for some ξ ∈ (a, b)

For the composite rules we derived

1. Tm(a, b)− I(a, b) =
(b− a)h2

12
f ′′(η), η ∈ (a, b)

2. analogously Sm(a, b)− I(a, b) = −(b− a)h4

180
f (4)(η), η ∈ (a, b)

36

Adaptive Integration – Idea
Idea. Instead of equispaced points, use a basic function, for example
SimpsonBasic, that returns a quadrature Q(a, b) and an error estimate
E(a, b) to partition the interval

a = x0 < x1 < · · · < xm = b

such that (automatically) for any k = 0, . . . ,m− 1 we have

|E(xk, xk+1)| ≤
xk+1 − xk

b− a
Tol

where Tol is a given tolerance (by the user).

This way the accumulated error is

E(a, b) ≈
m−1∑
j=0

E(xk, xk+1) ≤ Tol.

37

Algorithm. Adaptive quadrature

Given f , a, b and a user defined tolerance Tol.

1. Calculate Q(a, b) and E(a, b).
2. If |E(a, b)| ≤ Tol

▶ Accept the result, return Q(a, b) + E(a, b) as an approximation to
I(a, b).

else
▶ set c = (a+ b)/2, and repeat the process on each of the subintervals

[a, c] and [c, b], with tolerance Tol/2.
3. Sum up the accepted results from each subinterval.

38

How can we get a good estimate for the error?

If we consider S(a, b) = S1(a, b).
How to estimate its error E1 in Step 1 on the last slide?

Idea. Use S2(a, b) as follows

1. Compute S1(a, b) (requires f at the mid point c = a+b
2)

2. Compute S2(a, b) (requires f additionally at d = a+c
2 and e = c+b

2)
3. Compute the approximate errors

E1(a, b) =
16

15
(S2(a, b)−S1(a, b)) and E2(a, b) =

1

15
(S2(a, b)−S1(a, b))

4. use E2(a, b) to decide, whether on [a, b]we are “good enough” (≤ Tol)
5. if so, return the best approximate for I(a, b), here: S2(a, b) + E(a, b)

	Polynomial Interpolation
	Numerical Integration

