Sec. 10.5

Complex Fourier Series. Optional 549

EXAMPLE 1

Complex Fourier series

Find the complex Fourier series of f(x) = e* if —7 < x < mand f(x + 2#) = f(x) and obtain from it the usual
Fourier series.

Solution. Since sin n = 0 for integer n, we have
T _

e = cos n * isinnw = cos nmw = (—1)".

With this we obtain from (8) by integration
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From this let us derive the real Fourier series. Using (2) and i2 = —1 we have in (10)

1+ in)eim’ = (1 + in)(cos nx + isin nx) = (cos nx — nsinnx) + i(ncos nx + sin nx).

Now (10) also has a corresponding term with —» instead of n. Since cos (—nx) = cos nx and sin (—nx) = —sin nx,
we obtain in this term

(1 = in)e™*™® = (1 — in)(cos nx — i 5in nx) = (cos nx — n sin nx) — i(n cos nx + sin nx).
If we add these two expressions, the imagin arts cancel. Hence their sum is
ginary
2 (cos nx — n sin nx), n=12"--.

For n = 0 we get 1 (not 2) because there is only one term. Hence the real Fourier series is
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where —m<x < |

PROBLEM SET 10.5

1. (Calculus review) Review complex numbers.

Complex Fourier Series. Find the complex Fourier series of the following functions. (Show the
details of your work.)

2. f)y=-lif —~m<x<0, f)=1if0<x<m,

J.fx)=x (—7<x<n

4. f{X)=0if —7<x<0, f=1if0<x<7

S. fx)=x 0<x<2m

6. f)=x2 (—w<x<m
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7. (Even and odd functions) Show that the complex Fourier coefficients of an even function are
real and those of an odd function are pure imaginary.

8. (Conversion) Convert the Fourier series in Prob. 5 to real form.

9. (Fourier coefficients) Show that a5 = ¢4, @, = Cn t Cpy by = i(c, — Cp)y
n=172"-..,

10. PROJECT. Complex Fourier Coefficients. It is very interesting that the ¢y, in (8) can be
derived directly by a method similar to that for the a, and b, in Sec. 10.2. For this, multiply
the series in (8) by e~ with fixed integer m and integrate termwise from — 1 to 7 on both
sides (allowed, for instance, in the case of uniform convergence), to get

f_:f(x)e'imdx = i cnf

m
et(n—m)x dx.
m

N=—nc

Show that the integral on the right equals 277 when n = m and O when n # m [use (5)], so that
you get the coefficient formula in (8).

Forced Oscillations

Fourier series have important applications in differential equations. We show this for a
basic problem involvin g an ordinary differential equation. Numerous applications to partial
differential equations will follow in Chap. 11. All this will Justify Euler’s and Fourjer’s
idea of splitting up a periodic function in a series of (simpler) such functions, an idea
whose enormous usefulness was far from obvious.

From Sec. 2.11 we know that forced oscillations of a body of mass m on a spring of
modulus k are governed by the equation

1 my” + ¢y’ + ky = r(p),

where y = y(r) is the displacement from rest, ¢ the damping constant, and r(#) the external
force depending on time 7. Figure 249 shows the model and Fig. 250 its electrical analog,
an RLC-circuit governed by

1
1%) LI" + RI' + EI =E'®@ (Sec. 2.12).
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Fig. 249. Vibrating system Fig. 250. Electrical analog of the
under consideration System in Fig. 249 (RLC-circuit)




