TMA4213/4215
Calculus 4M/N
Spring 2013
Norwegian University of Science and Technology

Exercise set 9
Institute of mathematical sciences

1 The following table gives the total petroleum production on the Norwegian shelf in selected years. The t-column denotes years since 2000 (so $t=1$ is 2001 etc.), The f-column is total petroleum production in millions of Sm^{3} oil equivalents.

t_{j}	f_{j}
0	244
4	264
8	243
12	226

a) Find the Lagrange interpolation polynomial for these data.
b) Use the polynomial from a) to find an approximation to the petroleum production in 2010. For comparison, the actual production this year was 231 million Sm^{3}.
c) Use the polynomial to find an approximation for the oil production in 2020. Is this realistic? Using the polynomial, what is the approximation for the oil production in 1993?

2 a) In general, which polynomial degree do you need to interpolate 5 data points?
b) Find the interpolation polynomial for the data $(-4,50),(-2,18),(0,2),(2,2)$, $(4,18)$ by using a divided difference table. What is the degree of this polynomial? How can you see the degree from the divided difference table?

3 In this problem, we want to estimate the integral $I=\int_{0}^{2} \cos x^{2} \mathrm{~d} x$ by using different techniques.
a) Approximate I using the rectangular rule on 4 subintervals of equal length.
b) Approximate I using the trapezoidal rule on 4 subintervals of equal length.
c) Approximate I using Simpson's rule on 4 subintervals of equal length.

4 In this problem, we want to establish expressions for the error in some common numeric differentiation formulas to approximate f^{\prime} and $f^{\prime \prime}$ In both subproblems, we
assume that f is an analytic function, that is, f is equal to its Taylor expansion around the point x.

$$
f(x+t)=f(x)+f^{\prime}(x) t+\frac{f^{\prime \prime}(x)}{2!} t^{2}+\cdots+\frac{f^{(n)}}{n!} t^{n}+\cdots
$$

In the following h is a small parameter, so the dominant term of an expansion in h is the term with the smallest exponent.
a) The forward difference formula for f^{\prime} says

$$
f^{\prime}(x) \approx \Delta f(x)=\frac{f(x+h)-f(x)}{h}
$$

Find the dominant term of the error $\Delta f(x)-f^{\prime}(x)$ using the Taylor expansion of f.
b) ${ }^{1}$ The central difference formula for f^{\prime} says

$$
f^{\prime}(x) \approx \delta_{h} f(x)=\frac{f(x+h)-f(x-h)}{2 h}
$$

Find the dominant term of the error $\delta_{h} f(x)-f^{\prime}(x)$ using the Taylor expansion of f.
c) Find the dominant term of the error

$$
\delta_{h / 2}^{2} f(x)-f^{\prime \prime}=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}-f^{\prime \prime}
$$

[^0]
[^0]: ${ }^{1}$ The notation of Kreyszig Sec 19.5. is generalized, Kreyszig's δ corresponds to $\delta_{h / 2}$ in the notation here.

