Sensor guidelines for exam in TMA4120 Calculus 4K 2022 cont

1. The exam has 8 problems, each with a max score of 10 points.
2. The problems are scored individually based on the guidelines below.
3. The scoring is based on the judgement of the senor.
4. Every answer should be well justified/explained, and the score reduced if not.
5. Correct computations following an initial error (følgefeil), can be given some credit, but the score must be reduced according to how much the problem is changed/simplified.
6. The total score (the sum) is multiplied by $10 / 8$ (giving max score 100), and then converted into grades using the following table:

Points	$0-40.9$	$41-52.9$	$53-64.9$	$65-76.9$	$77-88.9$	$89-100$
Grade	F	E	D	C	B	A

Problem 1:	Correctly transformed equations: Correct Laplace transform Y(s): Correct inverse Laplace:	3 points 3 points 4 points
Problem 2a):	Correctly computed coefficients:	6 points
	Correct figure:	4 points
Problem 2b):	Correctly use Parseval to the real Fourier series:	4 points
	Correct calculation/reasoning for $\mathrm{g}(\mathrm{x})$:	3 points
	Correct calculation/reasoning for $\mathrm{h}(\mathrm{x})$:	3 points
Problem 2c):	Correct derivation of ODEs for $\mathrm{F}(\mathrm{x})$ and $\mathrm{G}(\mathrm{t})$:	2 points
	Correct derivation of BCs for $\mathrm{F}(\mathrm{x})$ and $\mathrm{G}(\mathrm{t})$: 1 point	
	Correct solution of $\mathrm{F}(\mathrm{x}), \mathrm{G}(\mathrm{t})$, and $\mathrm{u} _\mathrm{n}$:	3 points
	Explains superposition/linear combination:	1 point
	Correct solution of init. cond'n:	3 points

Problem 3a): Correct calculation of real and imaginary parts of f: 4 points
Correct use of Chauchy-Reimann eq.: 2 points
Correct calculation of derivatives and conclusion: 4 points
Problem 3b): Correct singularities and zeros of $g(z)$: 4 points
Correct reasoning and conclusion of continuity: 6 points
Problem 3c): Correct Laurent series of $\mathrm{h}(\mathrm{z})$: 4 points
Correct Laurent series of $1 /(z-1)^{\wedge} 2$ for $0<|z|<1$: 3 points
Correct Laurent series of $1 /(z-1)^{\wedge} 2$ for $1<|z|$: 3 points
Problem 8: Correctly transforming to the integral of $\exp (\mathrm{iz}) / \mathrm{z} \quad 2$ points
Correct calculation/reasoning of $S_{\varepsilon} \quad 4$ points
Correct calculation/reasoning of $\mathrm{S}_{\mathrm{R}} \quad 3$ points
Correct conclusion for the original problem 1 points

