Sensor guidelines for exam in TMA4120 Calculus 4K 2022 cont

- 1. The exam has 8 problems, each with a max score of 10 points.
- 2. The problems are scored individually based on the guidelines below.
- 3. The scoring is based on the judgement of the senor.
- 4. Every answer should be well justified/explained, and the score reduced if not.
- 5. Correct computations following an initial error (følgefeil), can be given some credit, but the score must be reduced according to how much the problem is changed/simplified.
- 6. The total score (the sum) is multiplied by 10/8 (giving max score 100), and then converted into grades using the following table:

Points	0-40.9	41-52.9	53-64.9	65-76.9	77-88.9	89-100
Grade	F	E	D	С	В	А

Problem 1:	Correctly transformed equations: Correct Laplace transform Y(s): Correct inverse Laplace:	3 points 3 points 4 points
Problem 2a):	Correctly computed coefficients: Correct figure:	6 points 4 points
Problem 2b):	Correctly use Parseval to the real Fourier series: Correct calculation/reasoning for g(x): Correct calculation/reasoning for h(x):	4 points 3 points 3 points
Problem 2c):	Correct derivation of ODEs for $F(x)$ and $G(t)$: Correct derivation of BCs for $F(x)$ and $G(t)$: 1 point Correct solution of $F(x)$, $G(t)$, and u_n : Explains superposition/linear combination: Correct solution of init. cond'n:	2 points 3 points 1 point 3 points
Problem 3a):	Correct calculation of real and imaginary parts of f: Correct use of Chauchy-Reimann eq.: Correct calculation of derivatives and conclusion:	4 points 2 points 4 points
Problem 3b):	Correct singularities and zeros of g(z): Correct reasoning and conclusion of continuity:	4 points 6 points
Problem 3c):	Correct Laurent series of h(z): Correct Laurent series of 1/(z-1)^2 for 0< z <1: Correct Laurent series of 1/(z-1)^2 for 1< z :	4 points 3 points 3 points
Problem 8:	Correctly transforming to the integral of $exp(iz)/z$ Correct calculation/reasoning of S_{ϵ} Correct calculation/reasoning of S_{R} Correct conclusion for the original problem	2 points 4 points 3 points 1 points