Oppgaver til øving 11

October 29, 2020

15.3

15.3.4

Show that

$$
\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty}(n+1) z^{n}
$$

(a) by using the Cauchy product, (b) by differentiating a suitable series.

15.3.8

Find the radius of convergence of

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{n(n+1)} z^{n}
$$

in two ways: (a) directly by the Cauchy-Hadamard formula in Sec. 15.2, and (b) from a series of simpler terms by using Theorem 3 or Theorem 4.

15.4

15.4.5

Find the Maclaurin series and its radius of convergence for

$$
\frac{1}{2+z^{4}} .
$$

15.4.8

Find the Maclaurin series and its radius of convergence for

$$
\sin ^{2} z
$$

15.4.24

Find the Taylor series centered at $z_{0}=1$ of

$$
e^{z(z-2)}
$$

and its radius of convergence.

15.5

15.5.10

Prove that the series

$$
\sum_{n=0}^{+\infty} \frac{z^{2 n}}{2 n!}
$$

converges uniformly in $|z| \leq 10^{20}$.

Review chapter 15

Exercise 26
Find the Taylor series centered at i of

$$
z^{4}
$$

and its radius of convergence.

