semicircle S approaches 0 as $R \to \infty$. For $r \to 0$ the integral over C_2 (clockwise) approaches the value

$$K = -\pi i \, \text{Res} \, f(z)$$

by Theorem 1. Together this shows that the principal value P of the integral from $-\infty$ to ∞ plus K equals J, hence $P = J - K = J + \pi i \, \text{Res}_{z=0} f(z)$. If $f(z)$ has several simple poles on the real axis, then K will be $-\pi i$ times the sum of the corresponding residues. Hence the desired formula is

$$(14) \quad \text{pr. v. } \int_a^b f(x) \, dx = 2 \pi i \sum \text{Res} \, f(z) + \pi i \sum \text{Res} \, f(z)$$

where the first sum extends over all poles in the upper half-plane and the second over all poles on the real axis, the latter being simple by assumption.

Example 4

Poles on the Real Axis

Find the principal value

$$\text{pr. v. } \int \frac{dx}{(x^2 - 3x + 2)(x^2 + 1)}$$

Solution. Since

$$x^2 - 3x + 2 = (x - 1)(x - 2),$$

the integrand $f(x)$, considered for complex z, has simple poles at

$$z = 1, \quad z = 2, \quad z = i, \quad z = -i$$

the principal value (showing details):

$$\text{pr. v. } \int \frac{dx}{x^2 + 1} = 2 \pi i \left(\sum \text{Res} \, f(z) \right) + \pi i \sum \text{Res} \, f(z)$$

and at $z = -i$ in the lower half-plane, which is of no interest here. From (14) we get the answer

$$\text{pr. v. } \int \frac{dx}{(x^2 + 3x + 2)(x^2 + 1)} = 2 \pi i \left(\frac{-1}{20} + \frac{1}{5} \right) = \frac{\pi}{10}$$

More integrals of the kind considered in this section are included in the problem set. Try also your CAS, which may sometimes give you false results on complex integrals.
Problem 5 Determine the radius of convergence of the Taylor series of the function
\[h(z) = \frac{2}{1 + \cosh(z)} \]
centered at the origin. Explain your answer.

Problem 6 Consider the function
\[f(z) = \frac{\ln(z)}{z^2 + a^2}, \quad a > 0, \]
in the upper half plane. For \(z = re^{i\theta}, 0 \leq \theta \leq \pi \) we define
\[\ln(z) = \ln(r) + i\theta. \]
Let \(C \) be the following contour:

\[\quad \]

\[a) \] Determine \(\oint_C f(z) \, dz \) by residue calculations.

\[b) \] Show that the integrals over the half circles \(C_R \) and \(C_\varepsilon \) approach zero as \(R \to \infty \) and \(\varepsilon \to 0. \)

\[c) \] Compute
\[\int_0^\infty \frac{\ln(x)}{x^2 + a^2} \, dx. \]