

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4120 Calculus 4K

Examination date: 11.08.2018 Examination time (from-to): 9:00-13:00 Permitted examination support material: Language: English Number of pages: 5 Number of pages enclosed: 3 Checked by: Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig	Academic contact during examination: Phone:		
Permitted examination support material: Language: English Number of pages: 5 Number of pages enclosed: 3 Checked by: Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig □ 2-sidig ⋈ sort/hvit ⋈ farger □ Date Signature			
Number of pages: 5 Number of pages enclosed: 3 Checked by: Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig			
Checked by: Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig □ 2-sidig ⊠ sort/hvit ⊠ farger □ Date Signature	Number of pages: 5		
Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig □ 2-sidig ⊠ sort/hvit ⊠ farger □ Date Signature	Number of pages enclosed. 5		
Originalen er: 1-sidig □ 2-sidig ⊠ sort/hvit ⊠ farger □ Date Signature			Checked by:
1-sidig □ 2-sidig ⊠ sort/hvit ⊠ farger □ Date Signature	Informasjon om trykking av eksamensoppgave		
sort/hvit ⊠ farger □ Date Signature			
			0:
	sort/hvit ⊠ farger □ skal ha flervalgskjema □	Date	Signature

Problem 1 Let

$$g(t) = \begin{cases} 1, & 0 \le t < 1 \\ -1, & 1 \le t < 2 \\ 0, & 2 < t. \end{cases}$$

a) Find the Laplace transform of g.

Løsning By difinition:

$$\mathcal{L}(g) = \int_0^1 e^{-st} dt - \int_1^2 e^{-st} dt = \left(-\frac{1}{s} e^{-st} \right) \Big|_0^1 + \left(-\frac{1}{s} e^{-st} \right) \Big|_1^2.$$

Thus $\underline{\mathcal{L}(g)} = s^{-1}(1-2e^{-s}-e^{-2s})$. Alternatively, g(t) = u(t) - 2u(t-1) + u(t-2), using the tabel, we obtain

$$\mathcal{L}(g) = \mathcal{L}(u(t)) - 2\mathcal{L}(u(t-1)) + \mathcal{L}(u(t-2)) = \frac{1 - 2e^{-s} + e^{-2s}}{s}.$$

b) Solve the initial value problem

$$y''(t) + 4y(t) = g(t), \quad t \ge 0, \ y(0) = 0, \ y'(0) = 0.$$

Løsning We apply the Laplace transform, let $Y = \mathcal{L}(y)$, then using the initial data and computation from part a), we obtain

$$(s^2+4)Y = \frac{1-2e^{-s}+e^{-2s}}{s}, \quad Y(s) = \frac{1-2e^{-2}+e^{-2s}}{s(s^2+4)}.$$

We use partial fraction decomposition,

$$Y(s) = (1 - 2e^{-s} + e^{-2s}) \left(\frac{1}{4s} - \frac{s}{s^2 + 4}\right).$$

Then we apply the inverse Laplace transform

$$y(t) = \frac{1 + \cos 2t}{4}u(t) - \frac{1 + \cos 2(t-1)}{2}u(t-1) + \frac{1 + \cos 2(t-2)}{4}u(t-2).$$

Problem 2 Consider the boundary value problem:

$$\begin{cases} u_t = u_{xx}, \ t > 0, \ 0 < x < 1 \\ u(0, t) = u(1, t) = 0 \end{cases}$$

a) Find all solutions on the form u(x,t) = F(t)G(x) satisfying the end point conditions G(0) = G(1) = 0.

Løsning We divide the variables in the equation:

$$\frac{F'}{F} = \frac{G''}{G} = k.$$

Taking into account the boundary condition, we want to find G(x) such that G'' = kG and G(0) = G(1) = 0. We know that it is possible only when k < 0 and $k = -p^2$. Then $G(x) = \sin px$ and the condition G(1) = 0 implies $p = \pi n$ for a positive integer n.

Then $F' = -(\pi n)^2 F$ and $F(t) = C e^{-(\pi n)^2 t}$. all solutions with divided variables are of the form

$$u_n(x,t) = C_n \sin(\pi nx) e^{-(\pi n)^2 t}.$$

b) Use the principle of superposition to find the solution of the boundary value problem that also satisfies the following initial condition

$$u(x,0) = 3\sin(\pi x) + 5\sin(4\pi x), \quad 0 < x < 1.$$

 $L\emptyset sning$ We know that a linear combination of solutions is a solution (superposition principle), to satisfy the the initial condition we take

$$\underline{u(x,t)} = 3\sin(\pi x)e^{-\pi^2 t} + 5\sin(4\pi x)e^{-(4\pi)^2 t}.$$

Problem 3 Calculate the Fourier transform of the function

$$f(x) = \begin{cases} e^{-2018x}, & x \ge 0\\ 0, & x < 0. \end{cases}$$

 $L \emptyset sning$ By the definition

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-2018x - ixw} dx = \frac{1}{\sqrt{2\pi}} \frac{1}{2018 + iw} = \frac{1}{\sqrt{2\pi}} \frac{2018 - iw}{2018^2 + w^2}.$$

Problem 4 Assume that f(z) is an analytic function in a domain Ω that satisfies |f(z)| = 1 for all $z \in \Omega$. Prove that f is a constant.

Løsning Consider the function $h(z) = \ln f(z)$, since f has no zeros in Ω h is defined and analytic in Ω . Let h(z) = u(z) + iv(z), where u and v are the real and imaginary parts of h. We have

$$e^{u(z)}e^{iv(z)} = f(z).$$

Taking the absolute values we get $e^{u(z)} = |f(z)| = 1$. It implies that u(z) = 0 for all $z \in \Omega$. Then from the Cauchy-Riemann equation we see that $v_x = v_y = 0$ and v is also a constant. Finally we conclude that $f(z) = e^{h(z)}$ is a constant.