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Problem 1 Solve the initial value problem

'+ 4y + 4y =u(t—1), y(0)=0, ¢'(0)=1.

Problem 2 We consider the following boundary value problem
U 42U + U = Uy, 0 <2 <L, t>0, u(0,t)=u(L,t)=0. (%)
a) Find all solutions of (x) of the form u(z,t) = F(z)G(t).

nmT

b) Compute the coefficients of the sine Fourier series Sy(z) = Y72 by, sin *7* of
the function f(z) defined by f(z) = (L —z) for 0 < x < L.

c) Find a solution of (x) that satisfies the initial conditions

u<x70) = f(l’), ut(l‘70) =0,

where f is a function defined in b).

Problem 3 Show that if f(w) is the Fourier transform of a function f(z) then
the Fourier transform of the function f(z) sin bz is equal to £ (f(w+b) — f(w —1b)).

sin2z, |x| <1
Compute the Fourier transform of the function g(z) = 2l =

0, |z| >1
Problem 4 Let zg = 7. Determine the real and imaginary parts of
1
1+ 2; ﬂ; Lnzp; Ln(1 + 2).
1-— 20

Problem 5  Let f(z) = 255

a) Find all zeros and singular points of f(z), classify the singularities.

b) Compute ¢, f(z)dz, where C' is the circle of radius 3 centered at zp = 1.

c) Let g(w) = f(1/w) show that g(w) has essential singularity at zero. (Hint:
consider the values of g on a set 0 < |w| < r.)

Problem 6 Evaluate the integral [5° m4‘f§§§"+2 dx.
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Miscellaneous

1.t>0 1. t>
e Heaviside function u(t):{ = , (t—a):{ bz a

0,1<0 0,1 <a

e Dirac Delta function §(t — a) is zero everywhere except a and satisfies
22, 0(t — a)dt = 1, moreover [% g(t)d(t — a) = g(a) for any continuous
function g.

e Convolution For functions defined on the real line:

[rg(@) =20 fWg(x —y)dy = [2 flz —y)g(y)dy, —oo <z < oc;
for functions defined only on the positive half-axis:

frg(@) =[5 fy)g(z —y)dy.

Laplace transform

o L{f}(s) = F(s) J5= f(t)e'dt f(t) F(s)
o L{ef(1)}(s) = F(s —a) 1 !
o L{f'}(s) = sL{f}(s) — f(0) t"n=12,.. £
o L{f"}(s) = s*2L{f}(s) — sf(0) — et L
£1(0) o
" at’ - 1727"' ,ni'wrl
o Ll f(r)an)} () = LLLFH) oo (5=
cos bt =i
o L{fxg}=L{f}L{g} o
- b
o L{f(t — ult — )} = e=F(s), sin b 42
c>0
e cos bt eEmEE
o L{tf(1)}(s) = —F(s) N b
e sin bt Goa) i
o L{IUY(s) = [ F(0)do
u(t —c),c>0 £
d(t—c),c>0 e
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Fourier series and Fourier transform

e Periodic functions with period 2L, real and complex form

f(x) Nao—l-z ancos i x+b sm—x Z c, e pinma/L

n=1 n=-—oo

1 /L 1 L nm 1 L . nm
ap = ﬁ/—L f(x)dz, a, = z/_L f(x)cos f:cd:c, by, = z/_L f(x)sin fxd:c

1 /L f( ) finﬂ':):/Ld
Cp = — e x
2L J-1L
e Parseval’s identities

AT @) Pde = S5 leal?, [ 1 (@) 2de = 75 |f(w) Pdw
o flw)= L %, f@)e v da

. L[ y)eiveg f(x) f(w)
f(fE) V2r ffoo f(w)e w 5(ZE — a) ﬁefiaw
o fi(w) =iwf(w) L el <
y 1T > a sin aw
o f(w) = _wa(w) {0’ 7| > a \/gT
o flo—a)(w) = e flw) { e>0 |,
o fw—b) = @)(w) 0. o<0 ?affﬁf
o FT3= VIR o
efcm:2 Lewa/(éLa)
\2a

Complex numbers and analytic functions

o "t = ¢%(cosy +isiny),

iz —iz . iz_ ,—1z
ete — sinz=¢ 5
7

ef—e”*

2

z —z .
cos z = ,coshz:%,smhz:

e Taylor and Laurent series of an analytic function

i (z —20)", an = f(“)(zo) = 17{ Ldz

- n! 27i Jo (z — zo)"H!
= n(2 — by, = — —20)" ' d
z) nz:%a (z—20)" + Z = 20 =5 j[cf(z)(z 20) 2
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Some useful integrals

o [zsinardr = a%sinax— Zcosar +C
e [rcosaxrdr = ;ﬂcosax—i—%sinax—i—C

. . 2.2
o [2?sinaxdr = Sasinar + 24"~ cosax + C

a3
a2 .
. fxzcosa:pdx:%mcosax—%smax—kc
ax 3 ___e%” :
o [e®sinbrdr = o (asinbr —beosbr) + C

o [e™cosbrdr = %(acosbx + bsinbx) + C

o [ e dy = \/g, a>0



