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CHAP. 14 Complex Integration

¥|

Fig. 343. Paths in Example 7

b) We now have )
| =1, flan) =x(0=1

Cpiz)=1,
1 =i fe@) =x(n =1

Cpz(n) =1+,

Using (6) we calculate

1 2 1 .
1-idt=—+2i
- dz R;J-:Irdr+[ 2
JRezdz= LReNdL-*' ch eldz \ A
c 1 -

Note that this result differs from the result in (a).

Bounds for Integrals. ML-Inequality

mplex line integrals.
ill be a frequent need for estimating the absolute value of comp
There will be a

The basic formula is

=ML

J f@) dz

c

13

PROOF Taking the absolute value in (2) an
we obtain

2 f&n) Az

m=1

|S,| =

m=1

= i ‘f(gm)HAzml = ME |AZml-
m=1

Now |Az.,| is the lengt

er( l])()l]ll are b o Z . If n appIOaCheS n
i * Zn ( )
g N ( )

-
ll‘lteg[‘a 18, W the time belllg we

i le.
the practical use of (13) by a simple example

(ML-inequality);

i i i 132
d applying the generalized inequality (6*) in Sec

. 3 )
: 2.1 and z,, (see Fig. i
h of the chord whose endpoints are Zy,—1 linengf o ,....

h L* of the broken o
ight represents the lengt the ay that the gredl
Hence the sum on the rig p finity in such ivz gf” ! cthu el

SEC.14.1 Line Integral in the Complex Plane

EXAMPLE 8 Estimation of an Integral

fzz dz,
C C

1

Fig. 344. Path in
Example 8

PROBLEM SET 141
FIND THE PATH and sketch it

Lzn=+%in =r=6)
2:0=3+i+(1 - 0=r=3)
ha=r+4% (0=r=
=1+ -p% (—1=r=1

5.40) =2 =2 + \/f5pmit O=r=s2m)
6. 2() = 1 + j + ¢~ mit 0=r=9
La)=1+2" (o<,< 2)

8.« =57, O=r=m/)

. 2(0) =t +i(1 ~ 8, (-2=r=79)
.z(t)=2cost+isint, O=r=2m)

1. Segment from (=1,2)to (1,9

12. From 0,0 t0 (2, 1) along the axes

13. Upper haif of |7 — 4 + il = 4 from (5, — Dto(=3,-1)
4. Unit circle, clockwise

b~ 2 = 4 e branch through (0, 2)

6, Ellipse 452 + 9)*2 = 36, counterclockwise

e+ g - ib] = r, clockwise

53 = 1/x from (1, 1) 1o )

Parabola y=1-3x2 (-2<, =2

B — )2 4 50y 4 2=120

INTEGRATION

S8rate by the firgt method or state why it does not apply
S U5€ the second method, Show the details.

_’“Reldz, C the shortest path from 1 + ; 1o 54 5i

The absolute value of the integral is |- £

Summary on Integration. Line int,
a representation (1) of the path of int
(9) as in calculus wil] be simpler (pr

22,

23,

24,

25,

26.

27,

28.

29.

30.

31.
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1 Find an upper bound for the absolute value of the integral
C the straight-line segment from O to | + i, Fig. 344,
Solution. [ = /3 a4 @Ol =13 =20nc gives by (13)

fzz dz
c

+3il = 2 V3 = 0.9428 (see Example 1), ]

=2V7 = 28084,

egrals of £(z) can always be evaluated by (10), using
egration. If f(z) is analytic, indefinite integration by
oof in the next section).

Rezdz, C the parabola y = | + %(x - 1?2 from

a—

I +ito3+ 34

f €® dz, C the shortest path from 7/2/ to i
c

€0s 2zdz, C the semicircle lz2l =mx=0 from

a—

=i to 7ri

f zexp (22) dz, C from 1 along the axes to ;
c

f (z + z—l) dz, C the unit circle, counterclockwise
c

f sec? 7 dz, any path from /4 to i/4
c

5 6
f (Z 2 \(Z — 21‘)2) dz, Cthecircle |7 ~ 2| = 4,
c

clockwise

f Im 22 47 counterclockwise around the triangle with
c
vertices 0, 1,

j Re 22 4; clockwise around the boundary of the square
c

with vertices 0, i, ] + i1

CAS PROJECT. Integration. Write programs for the
two integration methods, Apply them to probiems of
your choice. Could you make them into a joint program
that also decides which of the two methods to use ina
given case?
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il k] s (‘-) (‘\-)
see Ieaul I [DJECt 3 D m I IOblE"l Set(l)‘q‘ N | N Iha[ 18, two lndEfuute nte Ials Df f(‘\-) can

Cauchy’s Integral Theorem
for Mtzlltiply Connected Domains

i lain this for a
i ted domains. We first exp : k:
’ lies to multiply connec e, 53
Cauchy’s theoren:l ZI())FI)nlain D with outer boundary curve C, a?id‘ t1Sngoun dzary S
S COI}?C)CF: analytic in any domain D* that contains D and 1
a function f(2) 1
claim that

(Fig. 353)

§ f@) dz = ﬁ; fe@) de
®) c, c

g g *

*
or not the full interior of Co belongs to D¥).

Fig. 353. Paths in (5)

: d domains D, and
i : two simply connecte i
C Fig. 354) we cut D into tw ’s integral theorem the
PROOF By two cuts Gy o vcs;ﬁcgsegboundaries f(2) is analytic. By Caucgy Zrlrgsi in Fig. 354) is
RN e at‘ll1d 2Etire boundary of D; (taken in the sense of the
integral over the

ir sum. In this sum the
is the integral over the boundary of Dy, and tt?us the1t1;3 soVer L this S
B e hecuts C, and Cs cancel because we integra et o
integrals over the s d we are left with the integrals over Cy (C.O e
o ekt k?’;;;n 354); hence by reversing the integration
and Cy (clockwise; se f :

counterclockwise) we have
§ fdz — % fdz=20
(o o

1 2
and (6) follows.

For domains of higher connectivity Lhe(il:qea fgg;‘":;g?n
i three cuts Cy, Cg, C3 (Fig. X nterc .
over fie i 1 over Cy equa
fea) the integra 1 & ected
(CIOCkWISlT)t}:Seze;g;NPtI:I?:: counterclockwise. Similarly for quadruply conn
and Cg, all thr

and so on.

g integrals as before, the integral

same. Thus, for a triply connect
lockwise) and Cz, &8

domails

SEC.14.2  Cauchy’s Integral Theorem
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Cl
Fig. 355. Triply connected domain

COMMENTS ON TEXT AND EXAMPLES

1. Cauchy’s Integral Theorem. Verify Theorem 1 for
the integral of z2 over the boundary of the square with
vertices £1 * . Hint. Use deformation,

2. For what contours C will it follow from Theorem 1 that

dz_ exp (1/2%)
@ [ L0 fcw-"

(o}

3. Deformation principle. Can we conclude from

Example 4 that the integral is also zero over the contour
in Prob. 1?

4. If the integral of a function over the unit circle equals
2 and over the circle of radius 3 equals 6, can the
function be analytic everywhere in the annulus
1<z <39

5. Connectedness. What is the connectedness of the
domain in which (cos zz)X(z4 + 1) is analytic?

6. Path independence. Verify Theorem 2 for the integral
of € from 0 to | + ; (a) over the shortest path and
(b) over the x-axis to | and then straight up to 1 + ;.

7. Deformation. Can we conclude in Example 2 that
the integral of l/(z2 + 4) over (a) |z — 2| =2 and
() |z — 2| = 3 is zero?

8. TEAM EXPERIMENT. Cauchy’s Integral Theorem.,

(a) Main Aspects. Each of the problems in Examples
1-5 explains a basic fact in connection with Cauchy’s
theorem. Find five examples of your own, more
complicated ones if possible, each illustrating one of
those facts,

(b) Partial fractions. Write f(2) in terms of partial

fractions and integrate it counterclockwise over the unit
circle, where

2z + 3i @ £ z+1
i) fz) = :

2+ é 2 +2;

(¢) Deformation of Path. Review (c) and (d) of Team

Project 34, Sec. 14.1, in the light of the principle of defor-

Mation of path, Then consider another family of paths

0 fo=

with common endpoints, say, 2D =1t+ia@t - 12),
0=r=1,aareal constant, and experiment with the
integration of analytic and nonanalytic functions of
your choice over these paths (e.g., z, Im z, 72, Re 22,
Im z2, etc.).

CAUCHY’S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle.

Indicate whether Cauchy’s integral theorem applies. Show
the details.

9. f(2) = exp (&)

1. f@z) = 1/(4z — 1)
3. f2) = 1/(z* - 1.2)
15. f(z) = Re ;
17. f@z) = 1/]2|2
19. f(z) = 23cot 2

20-30 | FURTHER CONTOUR INTEGRALS

Evaluate the integral. Does Cauchy’s theorem apply? Show
details.

10. f(z) = tan 412

12. f(z) = 23

14. f) = 1/7

16. f(z) = 1/(mrz ~ 1)
18. f(z) = 1/(57 - 1)

20. f Lo(l = 2)dz, Cthe boundary of the parallelogram
c

with vertices i, (1 + ).

dz
21. f >, C the circle |z] = 7 counterclockwise,
c?— 2

y1
22. 3€ Rezdz, cC:
c C
-1 | 1] x
2z -1 Y|
23 - —dz, C C
cl =7

Use partial fractions.
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27 jg oSz dz, C consists of |z} = 1 counterclockwise
: z
c

and |z| = 3 clockwise.

1 .
28 § 2 dz, C the boundary of the square with
" Je 162 - 81

vertices +1, *i clockwise.

29, 1; SINZ_ e Cilz— 4 — 21l = 6.5.
C

Use partial fractions.

25 § {dz C consists of |z| = 2 counterclockwise and 7 + 4diz
. , 2 .
e i 3 Mdz, C: |z = 2| = 4 clockwise. Use
|z] = 1 clockwise. c < 7
26 § coth 3z dz, C the circle |z — imil = 1 clockwise. partial fractions.
c

14.3- Cauchy’s Integral Formula

Ch s
IlEXt Se:tlon’ a"d n Shc lng tha[ all anal) tic fun: tions ha ca Ia) IDI Series IEFIBS&Ilta[lon

(to be seen in Sec. 15.4).

THEOREM-1 Cauchy’s Integral Formula

, . D
Let f(2) be analytic in a simply connected domain D. .Then for any point zg in
and any simple closed path C in D that encloses zo (Fig. 356),

(Cauchy’s integral formula)

a § 1@ 4~ omifzo)
C

Z— 20

the integration being taken counterclockwise. Alternatively (for representing f(zo)
by a contour integral, divide (1) by 27ri),

1 f@
a® fzo) = 7= i —~—dz

(Cauchy’s integral formula).
2mi ).z~ 20 }

i is into (1) on th
s i = + [f@) — f(zo)). Inserting this in
ddition and subtraction, f(z) = f(zo) ; : . Hae
PrOOF ?e?t a:md taking the constant factor f(zg) out from under the integral sign, w

dz f@ — f(zo)
@ § 1 dz=f(zo>jE +§ )0 .
C C [

Z— 20 Z— 20

i, whi 6 in Sec. 14
The first term on the right equals f(zo) * 27, which follows fro.th)‘(aI;gl: o
ith m = —1. If we can show that the second integral on the rig t 1sal 5 a’nalytic, e,
;/rove the theorem. Indeed, we can. The integrand of the second integr

SEC. 143 Cauchy'’s Integral Formula

— B

at zo. Hence, by (6) in Sec. 14.2, we can replace C by a small circle K of radius p and
center zg (Fig. 357), without altering the value of the integral. Since f(z) is analytic, it is
continuous (Team Project 24, Sec. 13.3). Hence, an € > 0 being given, we can find a

8 > Osuch that | f(z) — f(zo)| < € for all z in the disk Iz — zo| <. Choosing the radius
p of K smaller than §, we thus have the inequality

Fig. 356. Cauchy's integral formula

Fig. 357.  Proof of Cauchy’s integral formula

<
Z— 20

£
p
at each point of K. The length of K is 27p. Hence, by the ML-inequality in Sec. 14.1,

J10- s

2~ 20

€

< —27p = 27re.
4= pcmp €

K

Since € (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must
have the value zero, and the theorem is proved. ]

EXAMPLE-1 Cauchy’s Integral Formula

v4
jﬁ L dr=2mic?| = 2mie® = 46.4268i
c z—2 2=9

for any contour enclosing zo = 2 (since e” is entire),

and zero for any contour for which Zp = 2 lies outside
(by Cauchy’s integral theorem).

|
AMPLE=2 Cauchy’s Integral Formula

1

23_6 223—3
2 -dz = T dz
¢! c %3l

= 27i(32° = 3]lomipe

=3 6mi (z0 = §iinside ). M
MPLE 3 Integration Around Different Contours

Integrate

2+1 2+ 1

g(z)=22_1_(z+1)(2_1)

counterclockwise around each of the four circles in Fig. 358.
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EXAMPLE 5

1. On Fig. 378. One “rectangle” and its image are colored.
Identify the images for the other “rectangles.”

PROBLEM SET 17.1— —

CHAP. 17 Conformal Mapping

Principle of Inverse Mapping. Mapping w = Lnz

Principle. The mapping by the inverse - = “Yw) of w = f(2) is obtained by interchanging the roles of the
z-plane and the w-plane in the mapping by w = f(2). . . et
I’[:ow the principal value w = f(z) = Ln z of the natural logurnthm_l:as the 1nl\‘1)erse z= w)y=¢e l. Frf)m
Example 4 (with the notations z and w interchanged!) we know thal{; (w) = ¢' maps the fundainel;iz}l _reilorj
of the exponential function onto the z-plane without z = 0 (because ¢ # Qfor every w). Hence ‘-| ._fﬁ b— 2n4
maps the z-plane without the origin and cut along the negative real axis (where 8 = Im Ln z jumps by 277)
I i i -ple here w = u + jv.
to the horizontal strip —7 < v = 7 of the w-plane, w : . . )
ConSf?nrcl.:rem:L); 0rzapping w = Lnz + 27i differs from w = Ln z by the translation 27ri (.ve.mcally upward), this
function maps the z-plane (cut as before and O omitted) onto the strip m# < v = 37.r. S|m|'Iarly for Fachfof.?[ﬁ
infinitely many mappingsw = Inz =Lnz % 2nmi(n = 0, 1,2,---). The correspondl'ng horizontal s.tnps of wi o
27 (images of the z-plane under these mappings) together cover the whole w-plane without overlapping.

Magnification Ratio. By the definition of the derivative we have

@ — f(zo)

(4) Z — Zo = If (ZO)l-

22y

Therefore, the mapping w = f(z) magnifies (or shortens) the lengths of short lin.es' by
approximately the factor |f'(zo)|. The image of a small figure conforms' to th’e orlgu.lal
figure in the sense that it has approximately the same shape. Howe.ver, since [ () varies
from point to point, a /arge figure may have an image whose shape is quite different from
that of the original figure. ‘ '

More on the Condition f'(z) # 0. From (4) in Sec. 13.4 and the Cauchy-Riemann
equations we obtain

: NI VY ) S 7 S A S VI R VR
7 fl = ax lax C\ax ax ax dy dy ax
that is,

£ )2 = ox ay - a(u, v).
® D | ey
ax dy

This determinant is the so-called Jacobian (Sec. 10;3) of the.trantc,formation vJv = t{l i‘
written in real form u = u(x, ¥), v = v(x, y). Hence f _(zO) #0 1mp}1es that the tlaC<SJm .»
is not 0 at z¢. This condition is sufficient that the mapping w= f@ ina sufﬁf:len y)
neighborhood of zg is one-to-one or injective (different points have different images).
Ref. [GenRef4] in App. 1.

q 9 Sai
analytic function intersect at right angles-._ :
question for the curves |z| = const and arg £ =
Are there exceptional points?

MAPPING OF CURVES

Find and sketch or graph the images of the given curves

under the given mapping.

5.x=1,234 y=1,234 w=;2

6. Rotation. Curves as in Prob. 5, w = jz

7. Reflection in the unit circle. |z| =4,1 1,2 3,
Argz =0, xm/d4, /2, +377/2

8. Translation. Curves as in Prob. S5 w=z+24;

9. CAS EXPERIMENT. Orthogonal Nets. Graph the
orthogonal net of the two families of level curves
Ref(z) = constand Im f(z) = const, where (a) f(z) = 72,
) f&) = 1/z, (©) f) = 1/ (d) f2) = z + i)/
(I + iz). Why do these curves generally intersect at
right angles? In your work, experiment to get the best
possible graphs. Also do the same for other functions
of your own choice. Observe and record shortcomings
of your CAS and means to overcome such deficiencies.

MAPPING OF REGIONS

Sketch or graph the given region and its image under the
given mapping.

10. o] =3, ~7/8<Argz<m/8, w=:2

1. 1<z <3, 0<Agz<m/2, w=:3

122.2=Imz=5, w=i;

The next two sections discuss

The following class of con

SEC.17.2  Linear Fractional Transformations (Mébius Transformations)

thorough study is that such transform
value problems, as we shall see in C
conformal mappings map certain regions conformally onto each other, such as, say
mapping a disk onto a half-plane (Sec. 17.3) and so forth. Indeed, the first step in the
modeling process of solving boundary value problems is to identify the correct conformal
mapping that is related to the “geometry” of the boundary value problem.

formal mappings is very important. Linear fractional
transformations (or Mébius transformations) are mappings

2. Mapping w = z%. Draw an analog of Fig. 378 for
w=ig.

3. Conformality. Why do the images of the straight lines
x = const and y = const under a mapping by an

. Experiment on w = z. Find out whether W ==

. . . ! T -[ N
serves angles in size as well as in sense. 1Ty

your result.

@

‘

I

M

B.oxzl, w=1/;
4. |z -3 =4, w=1/z

FAILURE OF CONFORMALITY

Find all points at which the mapping is not conformal. Give
reason.

15. A cubic polynomial
z+ %
4722 + 2
17. sin 7z
18. Magnification of Angles. Let f(z) be analytic at zg.
Suppose that f'(zg) = 0, -+, f%~D(z0) = 0. Then the

mapping w = f(z) magnifies angles with vertex at z by
a factor k. Illustrate this with examples for k = 2, 3, 4,

Prove the statement in Prob. 18 for general k = |,
2,--+. Hint. Use the Taylor series.

MAGNIFICATION RATIO, JACOBIAN

Find the magnification ratio M. Describe what it tells

you about the mapping. Where is M = 12 Find the
Jacobian J.

16.

19.

20. w = %zz
2l w =23
22, w=1/z

17.2 Linear Fractional Transformations
(Mébius Transformations)

Conformal mappings can help in modeling and solving boundary value problems by first
mapping regions conformally onto another. We shall explain this for standard regions
(disks, half-planes, strips) in the next section. For
special basic mappings. Accordingly,

this it is useful to know properties of
let us begin with the following very important class.
linear fractional transformations. The reason for our
ations are useful in modeling and solving boundary
hapter 18. The task is to get a good grasp of which

(ad — bc # 0)

where a, b, ¢, d are complex or real numbers. Differentiation gives



