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CHAP. 15 Power Series, Taylor Series .
SEC.15.3  Functions Given by Power Series

AMPLE 1 Application of Theorem 3

Find the radius of convergence R of the following sel

n=2

ries by applying Theorem 3.

n=2

n
2
Differentiate the geometric series twice term by term and multiply the result by z2/2. This yields
|

Solution.
the given series. Hence R = 1 by Theorem 3.

n — 1. Since (n — 1)2 =n
the absolute value of this

EOREM 4 Termwise Integration of Power Series

The power series

i I n+1 PR B @
Z = apZ —_Z — cen

ontl T2 3°

- term by term has the same

obtained by integrating the seriesag + mz + c12z2 + -
radius of convergence as the original series.
our present series (7) converges

Since (6) is the right side of (5)

f Theorem 3.

The proof is similar to that o
3, we establish the main result in this section.

With the help of Theorem

Power Series Represent Analytic Functions

JEOREM 5 \» Analytic Functions. Their Derivatives

A power series with a nonzero radius of convergence R represents an analyti ;

function at every point interior to its circle of convergence. The derivatives of this
function are obtained by differentiating the original series term by term. All the
series thus obtained have the same radius of convergence as the original serie

Hence, by the first statement, each of them represents an analytic function.

PROOF (a) We consider any power series (1) with positive radius of convergence R. Let f@
its sum and f(z) the sum of its derived series; thus

) f@) = 2, and" and @ =S na"
n=0 n=1

We show that f(2) is analytic and has the derivative f1(2) in the interior of the Cil
convergence. We do this by proving that for any fixed z with |z| < R and Az-
difference quotient [ f(z + Az) — f(2)}/ Az approaches fi(z). By termwise

ﬂ‘) BL EM=—S E-T—] 5-3

elation tq Calculus. Mate

addition We g § calculus, Give details.
]

e

rial in this section gener-

IWise additi i
o * ad;;gn. Write out the details of the proof
1on and subtraction of power series

have from (4)
fz + A7) — f2) = (z+ A" — 2" K o 0 Theorem 3, p. 0
©) A — Al = ,Ez an{ Az e | imed, rove that Vir—1 as n— o, g
y_pl‘Oduct. ShOW[hat(l — Z)—Z - i(ll + 1y
Z

Note that the summation starts with 2, since the constant term drops out in l
difference f(z + Az) — f(2), and so does the linear term when we subtract &)

difference quotient.

o llsing the Gt

; h g
able serics Yy product, (b) by differentiating

6 [--]
© X an Az + A" 2 4 25 + AR 4

ckets contain 1 — | i

(n = 1), we see th
) , at for |z| =
series (6) cannot exceed | Ro and |z + Az = Ro, Ry < R

Letting A
2—0 and notin
S that R : )
any po . : g 0 (< R) is
o r}ilel: lgrt mterlgr to the circle of converge?we :rr]lzilme’
- From this the statements about the higher](fised'e
ri
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(b) we Cla““ that the series m (5) can be “lltte“

0= 22"z + Az

= g3,

The somewhat techpj
Chmca] proOf of this i R
is i :
() We consider (6). The bra s given in App. 4.

er|
ms, and the largest coefficient is

|Az] E lan|n(n — DRE™2,

n=2

al .
J nl is the second derived series of (2) at z = R
Z= Ry and

of this section and Theore 52.H n
heor:
e . m 1 of Sec. 1
L he sum of (7) (WlthOUt the factor ,AZ,) beK(eRC)e
0/

our present result is

Az ~h@)| = |Az|k(Ry).

n.v://etf:onleude that £(z) is analytic at
‘ative 1s represented by the derived
vatives follow by induction |

[5-15] BR/y\DlUS OF CONVERGENCE
DIFFERENTIATION OR INTEGRATION

I lnd [he ladlus Of y . Yy y
Convergence 1n two ways: (a d“ect] b

the Cauchy—llada“]md io”nula m SeC. ]5._:, a(”d) (b) flOlll a

series Ot Sllllplel terms by uSlllg “leOICm 3 or 1]1601611) 4.

o (= 1) -
S 2 =a—e-ar 6 3 ( 2 >2n+1

n=2 3 el
-0 2n + 1\ 277

AL -
Z+2 n 311
=YL ) 8 > n

z
Sl nn + 1)

— ==
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i (-3 2n 17.
) n(n + D(n + 2)

WG]
el k/\2

= 2"n(n + 1) on

S

=1

= 2n(2n — 1

2 n(2n )ZZn_2 19.

n"

-
=

]

i [(n + k)]'l ok 20.
1=0 k

+
S (n m)z"
1=0 m
1=2

o S"n(n — 1)

— (z— "
20] APPLICATIONS
OF THE IDENTITY THEOREM
clearly and explicitly where and how you are using
rem 2.

Even functions. If f(z) in (2) is even (e,
(~z) = f(z)), show that a, = 0 for odd n. Give

sxamples.

2.4 Taylor and Maclaurin

The Taylor series® of a function f(z), the complex analog of the real Taylor series is

6)) f@ = anz— zo)"

n=1
or, by (1), Sec. 14.4,

1
@ I = i

In (2) we integrate counterclockwise around a simple closed path C that contains Zg
interior and is such that f(z) is analytic in a domain containing C and every point DS
A Maclaurin series® is a Taylor series with center zg = 0. ]

2L EONARDO OF PISA, called FIBONACCI

credited with the first renaissance of mathematics on Christian soil. ¥
3BROOK TAYLOR (1685-1731), English mathematician who introduced real Tayl#l‘ SC"I_'e

MACLAURIN (1698-1746), Scots mathematici

Odd function. If f(z) in (2) is odd (i.e., f(—2) = —f(2)),
show that a,, = 0 for even n. Give examples.

Binomial coefficients. Using (1 + 2)P(1 + 2)? =
(1 + z)P*?, obtain the basic relation

= () B o)

n=0

Find applications of Theorem 2 in differential equa-
tions and elsewhere.

TEAM PROJECT. Fibonacci numbers.? (a) The
Fibonacci numbers are recursively defined by
ag=a; =1, age1=ay t ap—y if n=12,---,
Find the limit of the sequence (a, . 1/ay).

(b) Fibonacci’s rabbit problem. Compute a list of
ai, - ,apa. Show that a;o = 233 is the number
of pairs of rabbits after 12 months if initially there
is 1 pair and each pair generates 1 pair per month,
beginning in the second month of existence (no deaths
occurring).

(c) Generating function. Show that the generating
funcrion of the Fibonacci numbers is f(z) =
1/ —z— 22); that is, if a power series (1) represents
this f(2), 1ts coefficients must be the Fibonacci numbers
and conversely. Hint. Start from f(z)(1 — z — z%) =1
and use Theorem 2.

THEOREM 1

Series

1
where ay = ‘n—'f ™(z0)

PROOF

ZRi Zo)

*
{ sl g
i (

i
(= son of Bonaccio), about 1180-1250, Ita_linn mathe!

an, professor at Edinburgh.

SEC. 154 Taylor and Maclaurin Series
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The remainder of the Taylor series (1) after the term ap(z — zg)" is

) Ru(2) = wé (2%
277 L (2% — 2oy i(gx = )

(proof below). Writing out the corresponding partial sum of (1)

dz¥

we thus have

7z~

% s 2
T ® Flzo) + (&~ 2)

21 f”(zo) + ...

@) = f(zg) +

C))
(z—z o)n
n!

+

o) + Ry(2).

This is called Taylor’s formula wirh; remainder.

The remainders Ryn(2)
satisfy the inequality

5) M

lan] = =

~

where M is the maximum of
also in D,

| (@) ona circle |7 — Zo, = rin D whose interior is

The key tool is Cauchy’s inte

' gral formula in Sec. 14.3:
z (so that z* is the variable of integration), we have ’

writing z and z* instead of Zg and

(6) f(z) = L Sf(@*) 1)

2ri *
c & T2

fFliiges;g;;deW C, dfor \lévhich we take a circle of radius r with ¢
. - We develop 1/(z* — z) in (6) in powers of 7 —
manipulation (worth remembering!) we ﬁrstphave i

enter zg and interior in D
20- By a standard algebraic

@) . I 1

% _ T =

T Fmo-G@-z) 7 e\
(Z*—zo)<1—\°>

Z*_ZO
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) PROBLEM-SET 154 —
EXAMPLE 6 Integration :
Find the Maclaurin series of f(z) = arctan z. . 1. Calculus. Which of the series in this section have you
y 2 ing (19) term by term and using f(0) = 0 we get : . ;
Solution. We have f(z) = 1/(1 + ). Integrating discussed in calculus? What is new?
= (1) B8 2l < 1y; 2. On Examples 5 and 6. Give all the details in the
o __2n+1=___+.__+... < 1) . . - V
arctan z = Eo 1 LT3 derivation of the series in those examples.
his series represents the principal value of w=u + jv = arctan ; defined as that value for wh1=1 310 MACLAURIN SERIES
T,,IIS{ /2. Find the Maclaurin series and its radius of convergence.
z+2
EXAMPLE 7 Development by Using the Geometric Series 3. sin = Sovam
Develop 1/(c — z) in powers of z — zg, where ¢ — zo # 0. : | ] !
Solution. This was done in the proof of Theorem 1, where ¢ = z*. The beginning was simple algebra and "8+ .t 1+ 2iz
o the 7. 2sin? (2/2) 8. sinz

then the use of (11) with z replaced by (z — zo)/(c — zo):
n
1 _ 1 ol Zo)
1 1 _ -1 S <C o

c—z c-z0o-G@—20 _2—20) n=0
y (C—Zo)(l c - zo

1 Z— g 2_202
- 1+ +loo to )
c— 2o cC — 29 c 20

z z
9. j exp (—1%) dr 10. exp (z2) J exp (—12) dr
0 0

HIGHER TRANSCENDENTAL
FUNCTIONS

Find the Maclaurin series by termwise integrating the
integrand. (The integrals cannot be evaluated by the usual
methods of calculus. They define the error function erf z
sine integral Si(z), and Fresnel integrals? S(z) and C(z),
which occur in statistics, heat conduction, optics, and other
applications. These are special so-called higher transcen-
dental functions.)

This series converges for

fT o that is, z - zol < le = zol.

<1,
C— 2p

Binomial Series, Reduction by Partial Fractions

EXAMPLE 8 |
i i he following function with center zo = 1. . | z
e g 1 S(z) = | sint?dr 12. C(z) = | cost24r

22 +9z+5 i 0

&= 2 w12 : "
TreoneE i - . sin ¢
z z z 13. erfz = f e 2 dr  14. Si(z) = [ Tdt
7T Jy A

i i i first fraction in a binomial series
] develop f(z) in partial fractions and the .
R 5. CAS Project. sec, tan. (a) Euler numbers, The

Maclaurin series

1 Ao et TN
=1+ ™™= E( )Z
n Ey , E4

(1+2™ n-0 4
@) secz=FEg——z22+—z4_ 4...
(20) mim + 1) , mim+ 1)(m +2) 2R T ‘ 4t
S ok .
1 —mz 21 3! defines the Euler numbers Esy,. Show that Eg = 1,

Ey=-1,Ey=5 Eg= —61. Write a program that
computes the Ey,, from the coefficient formula in (1)
Or extracts them as a list from the series. (For tables

i i ies term by term. This &
with m = 2 and the second fraction in a geometric series, and then add the two series t y

1
o . 2 1 - 2 = %([1 7 1(12 i 1)]2) Tk 1 See Ref, [GenRef1], p. 810, listed in App. 1)
f@ = @+2% -3 B+tE-DP 2-@-D 3 (b) Bernoulli numbers. The Maclaurin series
B n = /-1 n ® (—1)"(;1 + 1) 1 - l)n )
1= /=2\/z 1>_ (‘ )=E[———“—n(‘ 2 By
=5,§o(n )5 Z\ ) T AT i e AR T L
g 3l 23 a_ 25 _p_..
=== - D= D) -—(z
=0 % (z=1 108( 1944
— 1| < 2. This had to be

We see that the first series converges for |z — 1| < 3 and the second for |z ! d 2, resp

<5 ints have distance 3 an
because 1/(z + 2)2 is singular at —2 and 2/(z — 3) at 3, and these poi — wi

from the center zg = 1. Hence the whole series converges for lz — 1] <2

16.

17.
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defines the Bernoulli numbers By,. Using undetermined
coefficients, show that

(3 Bi=-2 B:=% B3=0,
Bs= -3, Bs=0, Bg=;5, .

Write a program for computing B,,.

(¢) Tangent. Using (1), (2), Sec. 13.6, and (22), show
that tan z has the following Maclaurin series and
calculate from it a table of By, -+, Bag:

4
24 tanz=—2—_ %
e — 1 Mg
= 2n,92n
= eyt e
) ol .
) 2n)!

Inverse sine. Developing 1 /V1 ~ z%and integrating,
show that

arcsinz = z + <i>z_3 + (Q)is-
2)3 2:4/5
. < 1-3-5 > Z
2:4-6/7
Show that this series represents the principal value of
arcsin z (defined in Team Project 30, Sec. 13.7).
TEAM PROJECT. Properties from Maclaurin
Series. Clearly, from series we can compute function
values. In this project we show that properties of
functions can often be discovered from their Taylor or
Maclaurin series. Using suitable series, prove the
following.
(a) The formulas for the derivatives of €%, cos z, sin z,
cosh z, sinh z. and Ln (1 + 2)
(b) %(eiz + e‘iz) = Cosz
(¢) sinz # 0 for all pure imaginary z = iy # 0

+ -z < 1)

TAYLOR SERIES

Find the Taylor series with center Zp and its radius of

convergence.
18. 1/z, zo=1i 9. 1/0+2), zo=-i
20. cos?z, zg = /2 2l. cosz, zg=1

22. cosh (z ~ i), zg = i

23 1/(z — D% zo=—i 24, &40 o=

25, sinh 2z — i), zo = if2

French physicist and engineer, known for his work in optics.
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EXAMPLE 4

EXAMPLE 5

1. CAS EXPERIMENT. Graphs of Partial Sums. (a)
Fig. 368. Produce this exciting figure using your CAS.
Add further curves, say, those of 5356, 51024, €tc. on the

same screen.

PROBLEM SET 15.5

CHAP. 15 Power Series, Taylor Series

Weierstrass M-Test
Does the following series converge uniformly in the disk 2] = 1?
= M+
Solution. Uniform convergence follows by the Weierstrass M-test and the convergence of X1 Jm? (see
Sec. 15.1, in the proof of Theorem 8) because
lz[™ +1

=

Mmoo

m 2

2 |
=

m

m? + cosh mz|

IIA

No Relation Between Absolute
and Uniform Convergence

We finally show the surprising fact that there are series that converge absolutely but not

uniformly, and others that converge uniformly but not absolutely, so that there is no relation

between the two concepts.

No Relation Between Absolute and Uniform Convergence

The series in Example 2 converges absolutely but not uniformly, as we have shown. On the other hand, the senies

- (_l)m—l B 1 1 |

2 2
m=1 24+m X2+ x2+2 x*+3

i I line but not absolutely. y

converges uniformly on the whole rea ‘ -

Proagf By the familiar Leibniz test of calculus (see App. A3.3) the remainder Ry, doles n?(t)m)l( “C
term in absolute value, since we have a series of alternating terms whose absolute values

yore s . ] .
decreasing sequence with limit zero. Hence given € > 0, for all x we hav

1 |
R =g ——F<—-<e€

1
ifn>Ne)=—.
i+ n £

This proves uniform convergence, since N (e) does not depend on x.
The convergence is not absolute because for any fived x we have

|(_1)m—1 N 1

T 4em | x2+4m
k

m

where k is a suitable constant, and k2 1/m diverges.

(b) Power series. Study the nox}uniler;rln
vergence experimentally by graphing p 3
the endpoints of the convergence Ittt
=X

SEC.155 Uniform Convergence. Optional

POWER SERIES

Where does the power series converge uniformly? Give
reason.

[ n+2 nn
2'r2(7n—3)"

1=0
3 1 )
3 @+
‘n—05
o 3n l — I)TL .
4. > _(n,—'(z— i
n=0 ’

5. i ('2' )(4z + 20"

2
]

©

6. 2 2™(tanh %) 72"

n=0

o n! 1.
i Zln—2<z+zl>

- 371 9
8. — (7 ~ D"
E n(n + l)(z )

n=1

< —1 i

9, (z — 20"
E 32

2n+1

— S
lz] =1
neq 1o sinh nz|”

: 'PROJECT. Uniform Convergence.
) Weierstrass M.-test. Give a proof.
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(b) Termwise differentiation. Derive Theorem 4
from Theorem 3.

(c) Subregions. Prove that uniform convergence of a
series in a region G implies uniform convergence in
any portion of G. Is the converse true?

(d) Example 2. Find the precise region of convergence
of the series in Example 2 with x replaced by a complex
variable z.

(e) Figure 369. Show that x2 37 _; (1 + )™=
ifx # 0and 0if x = Q. Verify by computation that the
partial sums sy, 52, 53 look as shown in Fig. 369.

Y|
1

0
Fig. 369. Sum s and partial
sums in Team Project 18(e)

HEAT EQUATION

Show that (9) in Sec. 12.6 with coefficients (10) is a solution
of the heat equation for r > 0, assuming that f(x) is
continuous on the interval 0 = x < L and has one-sided

derivatives at all interior points of that interval. Proceed as
follows.

19. Show that |B,| is bounded, say |B,] < K for all n.
Conclude that

lity] < Ke=*uto if

1=1>0

and, by the Weierstrass test, the series (9) converges
uniformly with respect to x and t for ¢ = 1, 0=x=1L.
Using Theorem 2, show that u (x, 1) is continuous for

t = tg and thus satisfies the boundary conditions (2)
fort = to.

20. Show that [du,/atl < A2Ke™ 0 if 1=y and the
series of the expressions on the right converges, by
the ratio test. Conclude from this, the Weierstrass
test, and Theorem 4 that the series (9) can be
differentiated term by term with respect to ¢ and the
resulting series has the sum du/dr. Show that (9) can
be differentiated twice with respect to x and the
resulting series has the sum 4%u/dx2. Conclude from
this and the result to Prob. 19 that (9) is a solution
of the heat equation for all ¢ = to. (The proof that (9)
satisfies the given initial condition can be found in
Ref. [C10] listed in App. 1.)
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CHAPTER 15 REVIEW QUESTIONS AND PROBLEMS
for all z (then we write R = o). In exceptional cases a power series may converge
1. What is convergence test for series? State two tests from = (—3)nF1 .only' at'thf: center; such a series is practically useless. Also, R = lim /@y
T Give. ST 1s. = e if this Ilmlt‘ exists. The series (1) converges absolutely (Sec. 15.2) and uniformly
2. What is a power series? Why are these series very n=1 (Sec.'15.5) in every closed disk |z ~ zol =r <R (R > 0). It represents an analytic
important in complex analysis? RADIUS OF CONVERGENCE functlc?n f(z) for 'lz'— zol <R. The deri\"atives f'@,f"), - are obtained by
3. What is absolute convergence? Conditional convergence? Find the radius of convergence. Try to identfy e S ;:rmwllse differentiation of (1), and these series have the same radius of convergence
Uniform convergence? the series as a familiar function. ZS A A . :
4. What do you know about convergence of power series? e Y . ;)nverse.:ly, every analytic function f(z) can be represented by power series. These
5. What is a Taylor series? Give some basic examples. 16. E 2;1 17. 2 : o aylor series of f(z) are of the form (Sec. 15.4)
6. What do you know about adding and multiplying power n=1 n-0 '
series? = (=])" 2 = ST . n
7. Does every function have a Taylor series development? 18- 2 @n + ! (rz*m @) @ 2 al S zo)z — zg) (Iz — zo)l < R),
. n=0 n=0
Explain. L R . 4 )
8. Can properties of functions be discovered from ¢ D < 20. S z as in calculus. They converge for all z in the open disk with center z¢ and radius
Maclaurin series? Give examples. o Gt ! a3+ 4)" generally equal to the distance from zg to the nearest singularity of f(z) (point at
9. What do you know about termwise integration of which f(z) ceases to be analytic as defined in Sec. 15.4). If f(z) is entire (analytic
series? MACLAURIN SERIES for all z; see Sec. 13.5), then (2) converges for all z. The functions e® cos z Si)r; z
10. How did we obtain Taylor’s formula from Cauchy’s Find the Maclaurin series and its radius of convergence. etc. have Maclaurin series, that s, Taylor series with center 0, Simi]a; to th,ose in,
formula? Show details. L calculus (Sec. 15.4).
RADIUS OF CONVERGENCE 21. cosh 2’ 2. 1/a - 2*
23. cos (z%) 24, 1/(mz + 1)

Find the radius of convergence.
g 25, (& — 1)/

< n
SRR TAYLOR SERIES

L Find the Taylor series with the given point as center and its

12. 2 =1 @~ miy* radius of convergence.
n2 26. 2%, i
13. S ”_(Li_l) (z — " 27. sinz,
4% :
n=2 28. 1/z, 2i
= 5 29. Lnz, 3
”_ _ ~2n 1)
14. nz n! (= 3) 30. &, i

SUMMARY- OF CHAPTER 15—
Power Series, Taylor Series

Sequences, series, and convergence tests are discussed in Sec. 15.1. A power seri
is of the form (Sec. 15.2) 1

(0 2 an(z — z20)" = ap + ay(z — zg) + ax(z — z0)2 + s
n=0

zo is its center. The series (1) converges for |z — zo| < R and diV‘ir :
|z — zol > R, where R is the radius of convergence. Some power seri€s €Ol




