. 13
|

. CO pleX D| el entia SEC
b S S

C P X

T d f t 6a) by 1 and (6b by v and add. Similar to eliminate 1ti ly (6{1) by —v and
o get rid of u,, multiply ( «'.l) yu ( ) Yy 1 ]y, ate 1t,, mult P
1
g b1k x
“)b) by w and add. This yleldS

@® + vPuy =0,

(112 + uz)uy = Q.
= = 0. Hence, by the
2 = 42 + v2 # 0, then uy = uy
—p=0:hence f=0.1f k" =u ‘ : i e
e o Ihe'n < _alvso uoy I:-euu =fO. Together this implies u = const an =
i tions, *
Cauchy-Riemann equa
f = const. .
- i sin ) and set f(z) 3
tion that, if we use the polar form z = r(cos g -*{) i 1s;n )
entl ) f . o
\‘NF U(;) then the Cauchy-Riemann equations are (
iv(r, 0),

1 (r=>0).
Ur = 7 Vs
1
@ Ur = 7, Up

Laplace’s Equation. Harmonic Functions

1 (:()]n])]ex a]lalys]s in ellg 1neer l]lg lllatllelllathS lCSultS [Ilalllly fI'OlTl
he imagin art 0{ an a“al tic fUIlCt on sati

i 0
The great importance . ' .
. It occurs in gravitation, electrostatics, fluid

| part and t
he fact that both the rea oy
o ation, the most important PDE of .phy.sws o 5 ond 181
:'lqu hez’lt conduction, and other applications (see

ow, ’

M3 Laplace’s Equation

I ) = X B y [ and v sati.sfy
( ) iU(x ) is analytic ina dOI"(ll” D, fhe” bot/l u
ff( ) ux, y ]

Laplace’s equation

V22U = Ugy + Uty = 0

't ivatives in D.
in D and have continuous second partial deri

3. f(z)
1 f2)
> f(2)
(2)
f(2)

W = — W.lh res ect to )) we haVC
x ) k]

DOF Differentiating uy =

= —p .
Uyy = Uyaxs Uyy Yy

(10)
i jon is itself anal
ivati lytic function is 1 i
derivative of an ana ' i
I;Iow fZit) This implies that u and U'have contm;;).uz p e
eC; l;lr'the mixed second derivatives arf: equ : ti?lz h
Partl_cu 83 Similarly, (9) is obtained b)t dlffer'entla g= lgf
. .with respect to x and subtracting, using lzy Yz
-

<,

ytic, as we shall prove laye
1 derivatives of all ord
By adding (10) w :

with respect t0 ¥
s,

uy = . 'Vati\’es 14C
: ; cond-order partial deri 1). Hi
. ’s equation having continuous sec Iso Sec. 12.1
Solut10n§ otlf Laciliz(l)cnes z:?l their theory is called potential theory (see als
harmonic fun

g

— EXAMPLE 4

= .ra + y3

4 Cauchy-Riemann Equations. Laplace’s Equation 629

D, they are the real and imaginary parts of an analytic function fin D. Then U is said to

be a harmonic conjugate function of y in D. (Of course, this has absolutely nothing to
do with the use of “conjugate” for z.)

How to Find a Harmonic Conjugate Function by the Cauchy~Riemann Equations

Verify that u = 2 — _\'2 =y

is harmonic in the whole complex plane and find a harmonic conjugate function
v of u.

Solution, V=0 by direct calculation. Now uy, = 2y and Uy = =2y

— 1. Hence because of the Cauchy-
Riemann equations a conjugate v of « must satisfy

Uy = 1y = 2y, U = ~uy =2y + |,

Integrating the first equation with respect to y and differentiating the result with respect to x, we obtain

dh
U= 2xy + D), Up = 2y + —,
dx
A comparison with the second equation shows that dhj/dx = 1. This gives Ix) = x + ¢. Hence v = 2y + v+ ¢

(c any real constant) is the most general harmonic conjugate of the given u. The corresponding analytic function is

SR =u+iv=,2_ )-2 Yty +tx+ o) =72 4 iz + ic. [ |

Example 4 illustrates that a conjugate of a given harmonic Junction is uniquely determined
up to an arbitrary real additive constant.
The Cauchy—Riemann equations are the most important equations in this chapter, Their

relation to Laplace’s equation opens a wide range of engineering and physical applications,
as shown in Chap. 18.

(8) e 1. Cauchy-Riemann equations in polar form. Derive @) 14. v = ay 15. u = Ry
& and from (1), 16. u = sin x cosh ¥ 17. v = (2x - 1)y
2 read “nabla square =3 _ 1.2
(V" rea 211] CAUCHY-RIEMANN EQUATIONS 18w =27 -3y
V20 = Uy + Uyy = 0, > . . . 19. v = e " sin 2y .
the fol]owmg functions analytic? Use (1) or .
&) 2. f(2) = iz 20. Laplace’s equation. Give the details of the derivative

of (9).

21-24 | Determine ¢ and b so that the given function is
harmonic and find a harmonic conjugate.

=e""cos (y) — e~ sin 63)
= ¢"(cos y — isin ¥)
=Re (2% ~ iIm (:?)

=1/(z - 5 7. f2) = —i/* 21 u = e ™ cos qy
= Argz 22. u = cos ax cosh 2y
N 3772,.-’(23 + 472 23 u=a3 + bxy
=z + i Arg z 24. u = cosh ax cos y
= $in (x) cosh (y) + 4 cos (x) sinh (y) 25. CAS PROJECT. Equipotential Lines. Write a
' program for graphing equipotential lines u = const of
HARMONIC FUNCTIONS

a harmonic function » and of its conjugate v on the
Same axes. Apply the program to (a) u = y2 — ¥3
U=2xy,(b)u =3~ 3020 = 3%y — y3.

. Apply the program in Prob. 25 to ; = ¢* cos y,
v = e%siny and to an example of your own.

following functions harmonic? If your answer
ﬁ.nd d corresponding analytic function f(z) =
w(x, y). 26

13. u = —24
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Periodicity of e* with period 2,

z+27i

e for all z

Z
= e

1S a baSlC TOpE that fo ows fIO"l a"d the CI10!

—wr<ysm (Fig. 336).
13)

. z
This infinite strip is called a fundamental region of e”.

APLE 1 Function Values. Solution of Equations

i instance,
Computation of values from (1) provides no problem. For inst

i — 0.5646i) = 3.347 — 2.289i
o14-061 _ 140006 — isin 0.6) = 4.055(0.8253 — 0.56461)
6i _ _
[147161] = 14 = 4055,  Arget* 0% = —06.
To illustrate (3), take the product of 4 »
= os I — isin
o271 = g%(cos | + isinl) and e e*(c
6 _ ,@+D+@-D

. 24 2 21y =P = e
and verify that it equals e“e”(cos”™ 1 + sin )

- = = = = i e f all
5 1.609 is the real part O

v i i th l 5, / In

To solve the equa[lon -4 3+ 41, note first at le € X 609

. r
solutions. Now, since e = 5,

€7 Ccosy 3s e sy 4, COs y 0'61 siny = 0~8, 3 0.927.
9 . o) . . PSRN
.= L JLil = & =u 1, 4 . y y 1 [y
Ans. 1.609 + 0.927i N (" 0,1 ) These are infinitely man solutions {due to the pCHOd C1
) 1 - . g .
of €°). “ley lie on the vertical line x = 1.609 at a distance 27t from their nei hbors .

ré
n ]llllld t]lat e 1s an entire unction. DO y()u Stlll lelllelllbel Wllat that means?
f (

y

T

Fig. 336. Fundamental region of the
exponential function e” in the z-plane

DBLEM SET 13.5 ' -
Polar Form. Write in exponential form (0

; entire. Prove this.

8. vZ 9.3 —4i
A ) . . e

Function Values. Find ¢” in the form u + iv sV - - 1 §_ i
if z equals . 12. 1/(1 — 2) 13. .
X Soamc 0 14-17| Real and Imaginary Parts. Find

] 5.1—3mi _ZZ)
u/ . 7. V3 -%i 14. ¢ 7F 15. exp (
Tijo .

SEC. 13.6 Trigonometric and Hyperbolic Functions. Euler’s Formula 633

16. %2 17. exp (z3)

18. TEAM PROJECT. Fuither Properties of the Ex-
ponential Function. (a) Analyticity. Show that 7 is
entire. What about ¢1/29 ¢%9 e"(cos ky + i sin ky)? (Use
the Cauchy-Riemann equations.)
(b) Special values, Find all
(i) le7?| < I, (iii) e = ¢°,
(¢) Harmonic function. Show that u = ™
%2 - ¥%/2) is harmonic and find a conjugate.

(d) Uniqueness. It is interesting that f(z) = ¢°
uniquely determined by the two properties Slx +i0) =

e® and o = (@), where f is assumed to be entire. [
Prove this using the Cauchy-Riemann equations.

is

z such that (i) ¢ is real, 19-22 . Equations. Find all solutions and graph some
of them in the complex plane.
19. ¢fF = |

21. ez =0

cos 20, % = 4 4+ 3

22, &f = -2

13.6 Trigonometric and Hyperbolic Functions.
Euler’s Formula

Just as we extended the rea] ¢* to the complex e in Sec. 13.5, we now want to extend

the familiar real trigonometric functions to complex trigonometric Junctions. We can do
this by the use of the Euler formulas (Sec. 13.5)
e = cosx + isinx, e ™ = cosx — isinwx

By addition and subtraction we obtain for the real cosine and sine

cos x = 3(e* + ¢~i7)

sinx = i'(eix — 7).
2i

This suggests the following definitions for complex values z = x + iy:

3 o s 1 . N

a cosz =3 (e” + ¢ 2 sinz = ;(e’z — e ™).
i

It is quite remarkable that here in com

real. This is not an isolated incident

advantage of working in complex.

Furthermore, as in calculus we define

plex, functions come together that are unrelated in
but is typical of the general situation and shows the

(2) ¢ _ singz cos z
IS s cotz =
and
L 1
3 _ 1 o1
3 secz =3 cscz = o

Since € is entire, cos =

and sin z are entire functions, tan z and sec z are not entire; they
are analytic except at th

€ points where cos z is zero; and cot zand csc z are analytic except
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ROBLEM SET 13.6

4
w that

e T m
11. sin§i, cos(§ — 4f)

NCTIONS .
FORMULAS FOR HYPERBOLIC FU 12. cos i, cos[Fm(l + D]

i sinh x sin y 13-15| Equations and Inequalities. Using the defini-
cosh z = coshxcosy + isinhx

tions, prove: ,
' | i 7) = z sinz is o
sinh z = sinh x cos y + i cosh x sin y. 13, cos smis evel con (—2amcos 2, and ] ’
sin(—z) = —sinz.

IR R 14. |sinh y| = |cos z] = coshy,|sinhy| = sin z| = coshy.

Conclude that the complex cosine and sine are not
bounded in the whole complex plane.
15. sinzycos 29 = %[sin(zl + zg) + sin(z1 — z2)]

16-19| Equations. Find all solutions.
16. sinz = 100 17. cosh2z =0
18. coshz = —1 19. sinhz =0

20. Re tan z and Im tan z. Show that

sinh (z1 + z9) = sinh zq cosh zg + cosh z; sinh za.

inh2z = 2z

cosh®z — sinh®z = 1, cosh? z + sinh® z = cosh 2z

N 3 - - d
Entire Functions. Prove that cos z, sin z, cosh z, an

sinh z are entire. . o
Harmonic Functions. Verify by differentiation
Im cos z and Re sin z are harmonic.

12 l Function Values. Find, in the form u + iv, o i cos xz |
= | B .
sin&i 7. cos (—i), sin(—i) ——coszx © sinky

. : . . sinh y cosh y
cos i, cosh i B |

' J 2i) Imtan~——-——2. N

, cosh (=2 + i), cos(—1 —2i ST —

. sinh (3 + 4i), cosh (3 + 4i)

3.7 Logarithm. General Power. Principal Value

V‘Ve fl"ally llltloduce tlle Complfb\ 10 arithm WlllCh 1S more COI]IpllCﬂted tha“ the Iea]
g I ?

. cians
i i d historically puzzled mathematicians
i ich it includes as a special case) an : o
:cogamh::n ti(r:lv: 1((;2 ilf ;/ou first get puzzled—which need not happen!—be patient an
or som

through this section with extra care).

18 det“led as t]le mverse Of the €xX Ollelltla] leIlCth]I, tllat 1S, w c (1 I()I #

by the relation

e’ =1z

=yt
(Note that z = O is impossible, since e # 0 for all w; see Sec. 13.5.) If we setw
and z = reio, this becomes

i i0
e? = " = re®.

Now Ui men
fi S 13.5, we know that e tw has the absolute value 81;1 and the argu
, Irom Sec. D, il
“'?CSC must be equal to the absolute value and argument on the ng

et =, v=20.

d by In z (sometimes also by log z) and

.

SEC.13.7 Logarithm. General Power. Principal Value 637

EXAMPLE ]

e = rgives u = In r, where In r is the familiar reql natural logarithm of the positive
number r = |z]. Hence w = u + iv = Inz is given by

) Inz=1Inr+ig (r=|zl>0, 0 = arg 2).
Now comes an important point (without analog in real calculus). Since the argument of
z is determined only up to integer multiples of 277, the complex natural logarithm
Inz @z #0)is infinitely many-valued,

The value of In z corresponding to the principal value Arg z (see Sec. 13.2) is denoted
by Ln z (Ln with capital L) and is called the principal value of In z. Thus
) Lnz=In|z| + iArgz (z # 0).
The uniqueness of Arg z for given z (# 0) implies that Ln z is single-valued, that is, a

function in the usual sense. Since the other values of arg z differ by integer multiples of 27,
the other values of In z are given by

3 Inz=Lnz *+ 2nmi n=12-")

They all have the same real part, and their imaginary parts differ by integer multiples
of 27,

If z is positive real, then Arg 7 = 0, and Ln z becomes identical with the real natural

logarithm known from calculus. If Z is negative real (so that the natural logarithm of
calculus is not defined!), then Arg z = 77 and

Lnz=1Inlz| + i (z negative real).
From (1) and e'®7 = r for positive real r we obtain

(4a) elnz =

as expected, but since arg (¢?) = Y % 2n7r is multivalued, so is

(4b) In (°) = z * 2nmi, n=201,---
Natural Logarithm. Principal Value
Inl =0, 227, +as;,... Lnl =90
In4 = 1.386294 + 2p7ri Ln4 = 1.386294
In(—1) = %47, =3mi, +57i, .- Lon(=1) = 7
In (—4) = 1.386294 + 2n + Dmi Ln (—4) = 1.386294 + i
Ini =i/2, =372, 5mi/2, - Loni = 7i/2
In4i = 1.386294 + wi/2 * 2nmri Ln4i = 1.386294 + Tif2
In (—4i) = 1.386294 — mij2 * dngri Ln (—4i) = 1.386294 — mif2
In3-4)=1n5+ farg (3 — 4i) Ln (3 — 4i) = 1.609438 — 0.927295;
= 1.609438 — 0.927295; + 2n7ri (Fig. 337) ]
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It is a convention that for real positive z = X the expre
is the elementary real natural logarith
the sense of our definition). Also, if z
conventionally regarded as the unique value obtaine

CHAP.13 Complex Numbers and Functions. Comp

lex Differentiation

ssion z° means ¢° ™% where In x
m (that is, the principal value Lnz(z=x>0)in
= ¢, the base of the natural logarithm, z° = e is
d from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

@®

We have now introduced the complex fu

(€%, cos z, sin z, cosh 2, sinh z) entire (Sec.
and one of them (In z) splitting up into infinitely many

0 and on the negative real axis.
d hyperbolic functions see the problem set.

analytic except at certain points,
functions, each analytic except at

For the inverse trigonometric an

az = ez In a

nctions needed in practical work, some of them
13.5), some of them (tan z, cot 2, tanh z, coth 2)

PROBLEM SET 13.7

VERIFICATIONS IN THE TEXT
1. Verify the computations in Example 1.

2. Verify (5) for z; = —i andzg = — 1.
3. Prove analyticity of Ln z by means of the
Riemann equations in polar form (Sec. 13.4).

4. Prove (4a) and (4b).

COMPLEX NATURAL LOGARITHM nz
Principal Value Ln z. Find Ln 2 when z equals

Cauchy-

5. -7 6. 8+ 8i
7.8 — 8i 8.1 *i

9. 0.6 — 0.8i 10. —15 = 0.1
11. —ei®

12-16| All Values of In z. Find all values and graph
some of them in the complex plane.

12. Ine 13. In1

14. In(—5) 15. In ()

16. In (4 — 3i)

17. Show that the set of values of In(i
set of values of 2 In i.

18-21| Equations. Solve for z.
18. Inz = mi/2 19. Inz=4—3i
20. Inz=e + i 21. Inz =04 + 0.2

2) differs from the

22-28| General Powers. Find the principal value.

Show details.

22. (2i)%
24. (1 — )"

23. (1 + )
25, (-3

26. (02 21. (-1

28. (3 + 4

29. How can you find the answer to Prob. 24 from the
answer to Prob. 237

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
w = arcsin z is the relation such that sinw = z. The
inverse cosine w = arccos z is the relation such that
cos w = z. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these }'elations are
multivalued.) Using sinw = (e — e”*)/(2i) and
similar representations of cos w, etc., show that

(a) arccosz = —iln (z+ \/zz’—_l_)
(b) arcsinz = —iln (iz + \/T—_ZE)
(¢) arccoshz = In (z + \/z_z_:)
@ arcsinhz = Iz + VZ+ 1)

i itz
(e) arctanz = = In -
2 i—z
1. 1+z
f) arctanhz = —In——
2 1=z

(g) Show that w = arcsin z is infinitely many-valued
and if wy is one of these values, the others are of the

form wy*2nm and T —wi T o, n=01L"
(The principal value of w = u +iv
to be the value for which —7/2 = u =
and —7/2 <u < m/2ifv <0)

= arcsin zis define®
= 7w/2ifvEN

| Summary of Chapter 13
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e CH R-13
—— APTER 13- REVIEW-QUESTIONS AND PROBLEMS

1. Divide 4 + 7i by — ;
y —1+2i C
multiplication. i. Check the result by

2. thlt happens to a quotient if you take the complex
conjugates of the two numbers? If you take the absolut
values of the numbers? :

3. Write.the: two numbers in Prob. 1 in polar form. Find
the principal values of their arguments. ‘

4. State ‘the definition of the derivative from memo
Explain the big difference from that in calculus. &

5. What is an analytic function of a complex variable?

6. Can a function be differenti i
| tiable at a point with i
analytic there? If yes, give an examlgle i s

7. State the Cauchy—Riemann .
equat Wh
basic importance? quations. Why are they of

8. Discuss how &* i i
W e, COS z, sin z, cosh z, sinh z are related.

9. In z is more compli "
ExamiBies. mplicated than In x. Explain. Give

10. How are general
powers defined? Give
Convert it to the form x + iy. gl

11-16 | Complex Numbers. Find, i

s. F ,
showing details, ind, in the form x + iy,
11. 4 + 5i)
13. 1/(3 — 4i)

12. (1 — iy1°

14. Vi

—
—]

SUMMARY- OF CHAPTER 13

15. (1 — /(A + ) 16. £™i/2

17-20 | Polar Form. Represent in polar form, with the

principal argument.

— 3/
e /2

13.2—.21' 18. 12 +4, 12—
2. —5i 20. 0.6 + 0.8/
-1—24 Roots. Find and graph all values of:
21. V625 22. V=32

23. V-1 24. V1
25-30 | Analytic Functions. Find f(2) = ux, y) + iv(x, y)

with u or v as given. Check by th i i
Yoo y the Cauchy—Riemann equations
25 u=—xy

27. v = —e"sin 3y

26. v = y/(x2 + y2)
28. u = cos 3xcosh 3
- y
29. u = exp(—(x* ~ y%)/2) cos xy

30. v = cos 2x sinh 2y

31-35| Special Function Values. Find the value of:

31. cos (5 — 2i) 32. Ln (0.6 + 0.8i)
33. tan (1 + )

34. sinh (1 + i),
35. sinh (7 — i)

sin (1 + 77i)

Complex Numbers and Functions. Complex Differentiation

(M

plane, see Secs. 13.1 and 13.2.

a derivative (Sec. 13.3)

)]

For arithmetic operations with complex numbers
z=x+iy=re" = r(cos 6 + isin @),
r= Izl = x2 -+ 2 =
V ¥%, 0 = arctan (y/x), and for their representation in the complex

A compl i = j
plex function f(z) = u(x, y) + iv(x, y) is analytic in a domain D if it has

f@=

everywhere in D. Also, f(z) is 1
' . y analytic at a poi =zoifi ivati
neighborhood of z¢ (not merely at z itself).pomt @ o fithas a dervative in o

lim w
Az—(Q AZ




