6.2/6.3 Laplace transform, examples and applications

Eugenia Malinnikova, NTNU

22.august, 2017
Laplace transform: definition and existence

A special machine which changes one function into another. Input: $f(t)$, $t > 0$. Output:

$$F(s) = \mathcal{L}\{f\}(s) = \int_{0}^{\infty} f(t)e^{-st} dt$$

Definition

If f is a piece-wise continuous function on each interval $[0, A]$ then

$$F(s) = \mathcal{L}\{f\}(s) = \int_{0}^{\infty} f(t)e^{-st} dt = \lim_{A \to \infty} \int_{0}^{A} f(t)e^{-st} dt,$$

if the limit exists.

Theorem

If $|f(t)| < M e^{kt}$ (such f is called a function of exponential type), then $\mathcal{L}\{f\}(s)$ exists for all $s > k$.

2
Basic rules

— Linearity
\[\mathcal{L}\{af + bg\} = a\mathcal{L}\{f\} + b\mathcal{L}\{g\} \]

— First shift rule
\[\mathcal{L}\{e^{at}f(t)\}(s) = \mathcal{L}\{f\}(s - a) \]

— Second shift rule
\[\mathcal{L}\{u_c(t)f(t - c)\}(s) = e^{-cs}\mathcal{L}\{f\}(s), \quad c > 0 \]

— Derivatives
\[\mathcal{L}\{f'\} = s\mathcal{L}\{f\} - f(0), \quad \mathcal{L}\{f''\} = s^2\mathcal{L}\{f\} - sf(0) - f'(0), \]
\[\mathcal{L}\{f^{(n)}\} = s^n\mathcal{L}\{f\} - s^{n-1}f(0) - s^{n-2}f'(0) - \ldots - f^{(n-1)}(0) \]
Laplace transform of derivatives

Suppose that \(f \) and its derivatives are continuous functions of exponential type. Then integration by parts gives

\[
\mathcal{L}\{f'\} = \int_0^\infty f' e^{-st} \, dt = f(t) e^{-st} \bigg|_0^\infty - \int_0^\infty f(t)(-se^{-st}) \, dt = s\mathcal{L}\{f\} - f(0),
\]

Then for the second derivative, we apply the previous formula twice,

\[
\mathcal{L}\{f''\} = s^2\mathcal{L}\{f\} - sf(0) - f'(0),
\]

For higher order derivatives we get

\[
\mathcal{L}\{f^{(n)}\} = s^n\mathcal{L}\{f\} - s^{n-1}f(0) - s^{n-2}f'(0) - \ldots - f^{(n-1)}(0).
\]
Laplace transform of integrals

If \(f \) is a piece-wise continuous function of exponential type then

\[
\mathcal{L} \left\{ \int_0^t f(\tau) d\tau \right\} = \frac{1}{s} F(s)
\]

The function \(g(t) = \int_0^t f(\tau) d\tau \) is continuous, of exponential type and \(g'(t) = f(t) \).
Applications to ODE

Solve the initial value problem

\[ay'' + by' + cy = g, \quad y(0) = K_0, \quad y'(0) = K_1 \]

Apply the Laplace transform

\[(as^2 + bs + c)Y - (as + b)K_0 - aK_1 = G\]

Then

\[Y(s) = \frac{G(s)}{as^2 + bs + c} + \frac{(as + b)K_0 + aK_1}{as^2 + bs + c} \]

We can find \(\mathcal{L}\{(as^2 + bs + c)^{-1}\} \) and use the inverse Laplace transform to compute \(y \).
Example 1

\[y'' - 9y = 1, \ y(0) = 1, \ y'(0) = 0 \]

— Apply the Laplace transform

\[s^2 Y - s - 9Y = \frac{1}{s} \]

— Solve for \(Y \) and use partial fractions to write down the answer

\[Y(s) = \frac{s^2 + 1}{s(s^2 - 9)} = -\frac{1}{9s} + \frac{0.5}{9(s - 3)} + \frac{0.5}{9(s + 3)} \]

— Find \(y \) by performing the inverse transform

\[y(t) = -\frac{1}{9} + \frac{1}{18}e^{3t} + \frac{1}{18}e^{-3t} \]
Example 2

\[y'' + y' - 2y = \sin t, \quad y(0) = 0, \quad y'(0) = 1 \]

1.

\[s^2 Y - 1 + sY - 2Y = \frac{1}{s^2 + 1} \]

2.

\[Y(s) = \frac{s^2 + 2}{(s^2 + 1)(s^2 + s - 2)} \]

We want to decompose it using partial fractions (see next slide):

\[Y(s) = -0.1 \frac{s}{s^2 + 1} - 0.3 \frac{1}{s^2 + 1} + 0.5 \frac{1}{s - 1} - 0.4 \frac{1}{s + 2} \]

3. Applying the inverse transform we get

\[y(t) = -0.1 \cos t - 0.3 \sin t + 0.5e^t - 0.4e^{-2t} \]
Partial fractions: example

We look for the representation

\[Y(s) = \frac{as + b}{s^2 + 1} + \frac{c}{s - 1} + \frac{d}{s + 2}, \]

where

\[s^2 + 2 = (as + b)(s - 1)(s + 2) + c(s^2 + 1)(s + 2) + d(s^2 + 1)(s - 1). \]

Now we either open the brackets, compare the coefficients and solve a system of linear equations or we substitute \(s = 1, 2, i \) and find the constants \(a = -0.1, b = -0.3, c = 0.5, d = -0.4. \)
Laplace transform of discontinuous functions

The building block for discontinuous functions is the step function (Heaviside’s function) u_c:

$$u_c(t) = \begin{cases}
0, & t < c \\
1, & t \geq c
\end{cases}$$

For $c \geq 0$ we compute its Laplace transform:

$$\mathcal{L}\{u_c\}(s) = \int_c^\infty e^{-st} \, dt = \frac{e^{-cs}}{s}, \quad s > 0.$$

Further, the change of variables gives the second shift rule

$$\mathcal{L}\{u_c(t)f(t - c)\}(s) = e^{-cs} \mathcal{L}\{f\}(s), \quad c \geq 0.$$

We use it to evaluate the Laplace transform of piecewise defined functions.
Example

Find the Laplace transform of the function

\[
f(t) = \begin{cases}
0, & t < 1 \\
(t - 2), & 1 \leq t \leq 3 \\
0, & t > 3
\end{cases}
\]

First we look at the graph of this function

And rewrite the function as

\[
f(t) = (t - 2)(u_3(t) - u_1(t))
= (t - 3)u_3(t) + u_3(t) - (t - 1)u_1(t) + u_1(t)
\]

Then, using the rules above, we compute

\[
\mathcal{L}f(s) = \frac{e^{-3s}}{s^2} + \frac{e^{-3s}}{s} - \frac{e^{-s}}{s^2} + \frac{e^{-s}}{s}
\]
Inverse Laplace transform: Example

An important step in the application of the Laplace transform to ODE is to find the inverse Laplace transform of the given function. Find \(f(t) \) such that \(\mathcal{L}\{f\} = F \) is

\[
F(s) = \frac{e^{-2s}}{s^2 + 2s - 3}
\]

First, using the partial functions

\[
\frac{1}{s^2 + 2s - 3} = \frac{1}{4} \left(\frac{1}{s-1} - \frac{1}{s+3} \right).
\]

Then we write

\[
F(s) = \frac{1}{4} \left(\frac{e^{-2s}}{s-1} - \frac{e^{-2s}}{s+3} \right)
\]

and using the second shift rule and the table to get

\[
\mathcal{L}^{-1}(F)(t) = \frac{u_2(t)}{4}(e^{t-2} - e^{-3(t-2)})
\]
Consider an RLC circuit consisting of a resistor R, inductor L, and capacitor C, which is driven by a voltage source v. Let q be the charge on the capacitor and let the current in the circuit be i. By Kirchhoff’s voltage laws

$$L i'(t) + R i(t) + \frac{1}{C} q(t) = v(t)$$
RLC-circuit cont.

\[Li'(t) + Ri(t) + \frac{1}{C}q(t) = v(t) \]

In this equation: resistance, inductance, capacitance and voltage are known quantities but current and charge are unknown quantities, \(q(t) = \int_0^t i(\tau) d\tau \).
$Li'(t) + Ri(t) + \frac{1}{C}q(t) = v(t)$

In this equation: resistance, inductance, capacitance and voltage are known quantities but current and charge are unknown quantities, $q(t) = \int_0^t i(\tau)d\tau$.

We apply the Laplace transform

$L(sI(s) - i(0)) + RI(s) + \frac{1}{sC}I(s) = V(s)$
RLC-circuit example

Find $i(t)$ in the circuit with

$$R = 50.2\Omega, \ L = 1\ H, \ C = 0.1\ F, \ v(t) = 99.6(u(t) - u(t - 3)), \ i(0) = 0$$
RLC-circuit example

Find $i(t)$ in the circuit with

$$R = 50.2\,\Omega, \quad L = 1\,H, \quad C = 0.1\,F, \quad v(t) = 99.6(u(t) – u(t – 3)), \quad i(0) = 0$$

After the Laplace transform we get

$$(s + 50.2 + 10/s)l(s) = 100(1 – e^{-3s})/s$$

$$l(s) = \frac{99.6(1 – e^{-3s})}{s^2 + 50.2s + 10} = \frac{99.6(1 – e^{-3s})}{49.8} \left(\frac{1}{s + 0.2} – \frac{1}{s + 50} \right)$$

Then

$$i(t) = 2(e^{-0.2t} – e^{-50t} – e^{-0.2(t-3)}u(t – 3) + e^{-50(t-3)}u(t – 3))$$