14.2 Cauchy's integral theorem
 14.3 Cauchy's integral formula
 14.4 Derivatives of analytic functions

Eugenia Malinnikova, NTNU

October 23, 2017

Properties of the integral

- Linearity

$$
\int_{C}\left(c_{1} f_{1}(z)+c_{2} f_{2}(z)\right) d z=c_{1} \int_{C} f_{1}(z) d z+c_{2} \int_{C} f_{2}(z) d z
$$

- If \tilde{C} is the same curve as C with the reverse orientation (and end points z_{e} and $\left.z_{0}\right)$ then $\int_{\tilde{C}} f(z) d z=-\int_{C} f(z) d z$.
- If C consists of two pieces C_{1} and C_{2} then

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
$$

An important inequality

Theorem
Suppose that f is a continuous function on a curve C.If $|f(z)| \leq M$ for each z on C and L is the length of Cthen

$$
\left|\int_{C} f(z) d z\right| \leq L M
$$

Using a parametrization, we have

$$
\left|\int_{a}^{b} f(g(t)) g^{\prime}(t) d t\right| \leq \int_{a}^{b}|f(g(t))|\left|g^{\prime}(t)\right| d t \leq M \int_{a}^{b}\left|g^{\prime}(t)\right| d t=M L
$$

Simply connected domains and Cauchy's integral theorem

A domain D on the complex plain is said to be simply connected if any simple closed curve in D is a boundary of a subdomain of D.

Example

1. Any circle is a simply connected domain.
2. A circular ring or a punched disc are not simply connected domains.

Theorem
Let f be an analytic function in a simply connected domain D. If C is a simple closed curve in D then

$$
\oint_{C} f(z) d z=0
$$

Integration of analytic functions along paths

Corollary

In a simply connected domain the integral $\int_{C} f(z) d z$ of an analytic function does not depend on the path C but only on its end points, we write also

$$
\int_{C} f(z) d z=\int_{z_{0}}^{z_{e}} f(z) d z
$$

Anti-derivative

Theorem

Let fbe an analytic function on a simply connected domain D. Then there is an analytic function F in D such that $F^{\prime}(z)=f(z)$ for each z in D and

$$
\int_{C} f(z) d z=F\left(z_{e}\right)-F\left(z_{0}\right)
$$

where C is a simple curve with end points z_{0} and z_{e}.
To construct the anti-derivative we fix some point z_{c} in D and for each z in D define

$$
F(z)=\int_{z_{c}}^{z} f(\zeta) d \zeta
$$

One can check that F defined in this way is analytic and $F^{\prime}(z)=f(z)$.

Cauchy's integral formula

Theorem

Let f be an analytic function in a simply connected domain D. If C is a simple closed curve in D that encloses a point z_{0} then

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

To prove the formula we write $f(z)=f\left(z_{0}\right)+\left(f(z)-f\left(z_{0}\right)\right)$ and

$$
\frac{f(z)}{z-z_{0}}=\frac{f\left(z_{0}\right)}{z-z_{0}}+\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

The proof for Cauchy's integral theorem implies that

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{K} \frac{f(z)}{z-z_{0}} d z
$$

where K is a small circle centered at z_{0}.

Proof of Cauchy'sintegral formula

After replacing the integral over C with one over K we obtain

$$
f\left(z_{0}\right) \int_{K} \frac{1}{z-z_{0}} d z+\int_{K} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

The first integral is equal to $2 \pi i$ and does not depend on the radius of the circle. The second one converges to zero when the radius goes to zero (by the ML-inequality).

Example

Assume that C encloses z_{0} then
$-\oint_{C} \frac{z}{z-z_{0}} d z=2 \pi i z_{0}$
$-\oint_{C} \frac{e^{z}}{z-z_{0}} d z=2 \pi i e^{z_{0}}$
$-\oint_{C} \frac{z^{3}}{z^{2}+1} d z=\oint_{C} \frac{z^{3}}{(z+i)(z-i)} d z=\frac{1}{2 i}\left(\oint_{C} \frac{z^{3}}{z-1} d z-\oint_{C} \frac{z^{3}}{z+1} d z\right)$ If C encloses both i and $-i$ then we apply the Cauchy's formula to both integrals

$$
\oint_{C} \frac{z^{3}}{z^{2}+1} d z=\frac{1}{2 i}\left(2 \pi i i^{3}-2 \pi i(-i)^{3}\right)=-2 \pi i
$$

Derivatives of analytic functions

Theorem
If f is analytic in some domain D then it has derivatives of any order which are also analytic functions. Moreover,

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z, \\
f^{\prime}\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z, \\
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z,
\end{aligned}
$$

where C is a simple closed path in D that bounds some domain in D which contains z_{0}.

Examples

$$
\begin{gathered}
\oint_{C} \frac{z}{\left(z-z_{0}\right)^{2}} d z=2 \pi i \\
\oint_{C} \frac{e^{z}}{\left(z-z_{0}\right)^{4}} d z=\frac{2 \pi i e^{z_{0}}}{6}, \quad\left(e^{z}\right)^{\prime \prime \prime}=e^{z}
\end{gathered}
$$

$$
\oint_{C} \frac{\cos z}{(z-\pi)^{3}} d z=\frac{-2 \pi i \cos \pi}{24}=\frac{\pi i}{12}, \quad(\cos z)^{\prime \prime}=-\cos z
$$

Cauchy's inequality

Suppose that f is an analytic function in a disc of radius r around z_{0} and that $|f(z)| \leq M$ when $\left|z-z_{0}\right|=r$. Then

$$
|f(z)| \leq M, \quad \text { and } \quad\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}}, \quad \text { for }\left|z-z_{0}\right| \leq r
$$

Let $C=\left\{z:\left|z-z_{0}\right|=r\right\}$, we have

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

then taking the absolute values and applying ML-inequality, we get

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{2 \pi} \frac{M}{r^{n+1}} 2 \pi r=\frac{n!M}{r^{n}}
$$

Applications

Theorem (Liouville)
If a function is analytic in a whole complex plane and bounded in absolute value, then it is a constant
Functions analytic in the whole plane are called entire functions.
Theorem (Morera)
If fis continuous in a simply connected domain D and

$$
\oint_{C} f(z) d z=0
$$

for any closed curve C. Then f is analytic in D.

