14.1 Line integral in the complex plane

Eugenia Malinnikova, NTNU

October 17, 2017

Definition: Riemann sums

Let *C* be a smooth simple curve on the complex plain with end points z_0 and z_e . We consider a subdivision of this curve into small pieces by points $z_0, z_1, ..., z_n = z_e$ on the curve and on each part of the curve (z_j, z_{j+1}) we choose an additional point ζ_j . Let *f* be a continuous complex valued function on *C*. To a partition $\{z_0, ..., z_n\}$ with choosen points $\{\zeta_0, ..., \zeta_{n-1} \text{ we assign the Riemann sum}$

$$S_n = f(\zeta_0)(z_1 - z_0) + f(\zeta_1)(z_2 - z_1) + \dots + f(\zeta_{n-1})(z_n - z_{n-1})$$

Now, if $n \to \infty$ and the partitions are chosen such that $|z_{j+1} - z_j|$ tend to zero, then the sequence S_n has a limit, by the definition it is $\int_C f(z) dz$.

Parametrization of the curve

Proposition

If a simple curve *C* is parametrized by a differentiable function $g : [a, b] \to \mathbb{C}$ with $g'(t) \neq 0$. Then

$$\int_C f(z)dz = \int_a^b f(g(t))g'(t)dt$$

A Riemann sum for the integral $\int_a^b f(g(t))g'(t)dt$ is of the form $\sum_k f(g(s_k))g'(s_k)(t_{k+1} - t_k)$, where $a = t_0 < s_0 < t_1 < s_1 < ... < t_n = b$, while a corresponding Riemann sum for the integral of *f* over *C* is $\sum_k f(g(s_k))(g(t_{k+1}) - g(t_k))$. The difference between the sums goes to zero as $n \to \infty$.

Example

Let *C* be a quarter-circle, the part of the unit circle with $z_0 = 1$, $z_e = i$ and let f(z) = z. We want to compute $\int_C f(z)dz$. 1. By the definition: take $z_k = \zeta_k = e^{ik\pi/2n}$, k = 0, ..., n, then

$$S_n = \sum_{k=0}^{n-1} e^{ik\pi/2n} (e^{i(k+1)\pi/2n} - e^{ik\pi/2n}) = \sum_{k=0}^{n-1} e^{ik\pi/n} (e^{i\pi/2n} - 1)$$
$$= \frac{e^{i\pi} - 1}{e^{i\pi/n} - 1} (e^{i\pi/2n} - 1) = \frac{e^{i\pi} - 1}{e^{i\pi/2n} + 1} \to -1$$

2. By a parametrization, $g(t) = e^{it}, 0 \le t \le \pi/2, \, g'(t) = ie^{it}$ then

$$\int_{C} f(z) dz = \int_{0}^{\pi/2} e^{it} i e^{it} dt = i \int_{0}^{\pi/2} e^{2it} dt = \frac{1}{2} \left. e^{2it} \right|_{t=0}^{t=\pi/2} = -1$$

An important examples

Let C_R be the circle of radius *R* centered at the origin, $f(z) = z^m$, where *m* is integer.

$$I_m(R) = \int_{C_R} z^m dz$$

We parametrize the circle by $g(t) = Re^{it}$, $0 \le t < 2\pi$.

$$I_m(R) = \int_0^{2\pi} R^m e^{itm} (iRe^{it}) dt = iR^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt$$

- If
$$m = 0, 1, 2, 3,$$
 Then $I_m(R) = 0$.
- $f(z) = z^{-1}, m = -1$, then $I_{-1}(R) = 2\pi i$.
- $m = -2, -3, ...$ gives $I_m(R) = 0$
The value of $I_m(R)$ does not depend on R .

Shift of variable

Let now $T_R = \{|z - z_0| = R\}$ and $f(z) = (z - z_0)^m$ then one can do a change of variable

$$\int_{T_R} (z - z_0)^m dz = \int_{C_R} z^m dz = \begin{cases} 0, \ m \neq -1 \\ 2\pi i, \ m = -1 \end{cases}$$

We write $\int_{T_R} f(z) dz$ as $\oint_{T_R} f(z) dz$ to remind that the curve is closed or was $\int_{|z-z_0|=R} f(z) dz$.

Reduction to real valued integrals

Another way to compute the integral of a complex valued function f(z) = u(z) + iv(z) over a curve *C* is to use that dz = dx + idy and then reduce integration to real integration along curve

$$\int_{C} f(z)dz = \int_{C} (u+iv)(dx+idy) = \int_{C} (udx-vdy) + i \int_{C} (udy+vdx)$$

Three approaches to integration

- Definition by Riemann sum: provides some intuition and understanding of the integral, can be used to prove main properties;
- Parametrization: is used to compute integrals
- Real valued curve integration: helps to handle analytic functions (see below).
- We will study integration of analytic functions.