11.1-11.2. Fourier series

Eugenia Malinnikova, NTNU

September 5, 2017

Fourier series: reminder

Given a 2π-periodic function f, consider the series

$$
S_{f}(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{gathered}
$$

Convergence theorem: reminder

Theorem

Let f be a piece-wise continuous function on $[-\pi, \pi]$ (it can be extended 2π-periodically). Suppose that f has left and right derivatives at each point. Then the Fourier series S_{f} converges at each point and

$$
S_{f}(x)=\frac{f(x-0)+f(x+0)}{2},
$$

where $f(x \pm 0)=\lim _{h \rightarrow 0+} f(x \pm h)$.

Further example

Example

Let $f(x)=|x|,-\pi \leq x \leq \pi$ and f is extended to a 2π-periodic function. Find the Fourier series of f.

Further example

Example

Let $f(x)=|x|,-\pi \leq x \leq \pi$ and f is extended to a 2π-periodic function. Find the Fourier series of f.

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\frac{1}{\pi} \int_{0}^{\pi}|x| d x=\frac{1}{\pi} \frac{\pi^{2}}{2}=\frac{\pi}{2}
$$

Further example

Example

Let $f(x)=|x|,-\pi \leq x \leq \pi$ and f is extended to a 2π-periodic function. Find the Fourier series of f.

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\frac{1}{\pi} \int_{0}^{\pi}|x| d x=\frac{1}{\pi} \frac{\pi^{2}}{2}=\frac{\pi}{2} \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x=\ldots=\left.\frac{2 \cos n x}{n^{2} \pi}\right|_{x=0} ^{x=\pi}
\end{gathered}
$$

Further example

Example

Let $f(x)=|x|,-\pi \leq x \leq \pi$ and f is extended to a 2π-periodic function. Find the Fourier series of f.

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\frac{1}{\pi} \int_{0}^{\pi}|x| d x=\frac{1}{\pi} \frac{\pi^{2}}{2}=\frac{\pi}{2} \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x=\ldots=\left.\frac{2 \cos n x}{n^{2} \pi}\right|_{x=0} ^{x=\pi} \\
a_{n}=\left\{\begin{array}{l}
-\frac{4}{n^{2} \pi}, n \text { odd } \quad, \quad b_{n}=0 \\
0, n \text { even }
\end{array}\right. \\
S_{f}(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}
\end{gathered}
$$

Odd and even functions

f is odd if $f(x)=-f(-x)$.
Fact: f is odd \Leftrightarrow all $a_{n}=0$ (cos coefficients)
f is even if $f(x)=f(-x)$.
Fact: f is even \Leftrightarrow all $b_{n}=0$ (sin coefficients)

Half range expansions

Given a function f on $(0, \pi)$ we can extend it either as an odd oras even 2π-periodic function expand either as sin or cos Fourier series.

Example: $f(x)=\pi-x$. We have

$$
\begin{gathered}
f(x)=a_{0}+\sum_{1}^{\infty} a_{n} \cos n x=\sum_{1}^{\infty} b_{n} \sin n x, \\
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x, \\
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, n=1,2, \ldots \\
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x, n=1,2, \ldots
\end{gathered}
$$

Period 2L

Given $f(x)$ such that $f(x)=f(x+2 L)$. The corresponding Fourier series has the form

$$
\begin{gathered}
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x \\
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi}{L} x d x, n=1,2, \ldots \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi}{L} x d x, n=1,2, \ldots
\end{gathered}
$$

An old exam problem

The function f is defined by the following conditions:
i) $f(x)=f(-x)$ for all real x.
ii) $f(x)=f(x+4)$ for all real x.
iii) $f(x)=1-x$ for $0<x<2$.

Sketch the graph of f for $-2<x<6$. Find the Fourier series of f.

