6.4 Short impulses. Dirac δ-function. 6.5 Convolution

Eugenia Malinnikova, NTNU

August 29, 2016

Physical meaning of 2nd order differential equation

$$
m y^{\prime \prime}(t)+k y^{\prime}(t)+\gamma y(t)=f(t), y(0)=y_{0}, y^{\prime}(0)=y_{1} .
$$

m-mass;
k - resistance (friction for example);
γ - elasticity;
f - external force;
y_{0}, y_{1} - initial position and velocity.
Impulse: $\int_{0}^{\infty} f(t) d t$
Impulse - "measure of efforts made by the external force"

Modeling instant hit (hummer blow):

Hummer blow $=$ instant hit with given impulse (for example impulse equal 1)

Idea: Take a very short hit of impulse 1, let its length approach zero and see what is going to happen
We model an instant hit at the moment t_{0}. Take

$$
f_{\Delta}(t)= \begin{cases}0, & t<t_{0} \\ \frac{1}{\Delta}, & t_{0} \leq t<t_{0}+\Delta \\ 0, & t_{0}+\Delta<t\end{cases}
$$

and then pass to the limit as $\Delta \rightarrow 0$.

Bad news and good news

Unfortunately

$$
\lim _{\Delta \rightarrow 0} f_{\Delta}(t)= \begin{cases}\infty, & t=t_{0} \\ 0, & t \neq t_{0}\end{cases}
$$

does not make much sense.
Fortunately
$\varlimsup_{\Delta \rightarrow 0}\left(\mathcal{L} f_{\Delta}\right)(s)$ perfectly exists!
Hence we can use it in the right-hand side when solving ODE by using Laplace transform!

Dirac delta function

We consider the limit of those functions f_{Δ} as $\Delta \rightarrow 0$. This limit is called the Dirac delta function,

$$
\delta_{t_{0}}(t)=\delta\left(t-t_{0}\right)
$$

which is zero unless $t=t_{0}$ and satisfies

$$
\int_{-\infty}^{\infty} \delta_{t_{0}}(t) d t=1
$$

Laplace transform of the delta function

We can compute integrals of $\delta\left(t-t_{0}\right) g(t)$

$$
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) g(t) d t=\lim _{\Delta \rightarrow 0} \frac{1}{\Delta} \int_{t_{0}}^{t_{0}+\Delta} g(t) d t=g\left(t_{0}\right)
$$

where g is a continuous function.
In particular, if $t_{0}>0$ then

$$
\mathcal{L}\left\{\delta_{t_{0}}\right\}(s)=\int_{0}^{\infty} e^{-s t} \delta\left(t-t_{0}\right) d t=e^{-s t_{0}}
$$

When $t_{0}=0$ we write $\delta_{0}=\delta$ and we will agree that $\mathcal{L}\{\delta\}=1$.
We can compute the anti-derivative of $\delta_{t_{0}}$

$$
\int_{-\infty}^{t} \delta\left(t-t_{0}\right) d t=\left\{\begin{array}{l}
1, t>t_{0} \\
0, t<t_{0}
\end{array}=u_{t_{0}}(t)\right.
$$

Solving ODE with the Dirac function

Main idea: business as usual
Example (old exam problem):

$$
y^{\prime \prime}(t)+100 y(t)=\delta(t-2), y(0)=0, y^{\prime}(0)=0
$$

Test question: can you find $y(1)$ without solving the equation?

$$
\begin{gathered}
\mathcal{L}: y \mapsto Y(s), y^{\prime \prime} \mapsto s^{2} Y(s), \delta(t-2) \mapsto e^{-2 s} \\
Y(s)\left(s^{2}+100\right)=e^{-2 s} ; Y(s)=\frac{e^{-2 s}}{s^{2}+100} \\
y(t)=\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{s^{2}+100}\right)=0.1 u(t-2) \sin 10(t-2)
\end{gathered}
$$

Convolution

Let f and g be two piece-wise continuous functions on $[0,+\infty)$ we define a new function

$$
h(t)=(f * g)(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

It is called the convolution of f and g. Basic rules for convolutions are

- $f * g=g * f$
- $f *(a g)=a(f * g)$ when a is a constant
- $f *\left(g_{1}+g_{2}\right)=f * g_{1}+f * g_{2}$
- $(f * g) * w=f *(g * w)$

Laplace transform: convolution theorem

Theorem
Suppose that f and g are piece-wise continuous functions and there Laplace transforms are defined when $s>a$, $\mathcal{L}\{f\}=F, \mathcal{L}\{g\}=G$. Then the Laplace transform of their convolution $f * g$ is also defined when $s>a$ and

$$
\mathcal{L}\{f * g\}(s)=F(s) G(s)
$$

Convolution: examples

1. $f(t)=t, g(t)=t^{2}, f * g=\int_{0}^{t}(t-\tau) \tau^{2} d \tau=t^{4} / 12$

Check the convolution theorem

$$
\mathcal{L}\{t\}=s^{-2}, \mathcal{L}\left\{t^{2}\right\}=2 s^{-3} \text { and } \mathcal{L}\left\{t^{4} / 12\right\}=\left(24 s^{-5}\right)=2 s^{-5}
$$

2. $f(t)=\cos t, g(t)=1, f * g=\int_{0}^{t} \cos \tau d \tau=\sin t$

The Laplace transforms are:

$$
\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1}, \mathcal{L}\{1\}=\frac{1}{s} \text { and } \mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}
$$

3. $g(t)=1, f * g=\int_{0}^{t} f(\tau) d \tau$ and

$$
\left.\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right)\right\}(s)=\frac{1}{s} \mathcal{L}\{f\}(s)
$$

Applications of the convolution theorem, examples

Example

Find the Laplace transform of $f(t)=\int_{0}^{t}(t-\tau)^{3} \sin (2 \tau) d \tau$.

$$
\mathcal{L}\{f\}(s)=\mathcal{L}\left\{t^{3}\right\}(s) \mathcal{L}\{\sin 2 t\}(s)=\frac{6}{s^{4}} \cdot \frac{2}{s^{2}+4}=\frac{12}{s^{6}+4 s^{4}}
$$

Example

Find the inverse Laplace transform of $F(s)=\frac{1}{s^{3}-s^{2}}$

$$
\begin{gathered}
\mathcal{L}^{-1}\left\{\left(s^{3}-s^{2}\right)^{-1}\right\}=\mathcal{L}^{-1}\left\{s^{-2}\right\} * \mathcal{L}^{-1}\left\{(s-1)^{-1}\right\}=t * e^{t}=\int_{0}^{t} e^{\tau}(t-\tau) d \tau \\
\left(=t\left(e^{t}-1\right)-\left(t e^{t}-e^{t}+1\right)=e^{t}-t-1\right)
\end{gathered}
$$

