16.1 Laurent series
16.2 Zeros and singular points

Eugenia Malinnikova, NTNU

November 7, 2016
Taylor series

Theorem

Let $f(z)$ be analytic in a domain D and z_0 be any point in D. There is precisely one Taylor series with center z_0 that represents $f(z)$. The disk of convergence for this series is the largest disk centered at z_0 where $f(z)$ is analytic.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$
Theorem

Suppose that f is analytic in a domain D which contains a circular ring, $A = \{ r_0 \leq |z - z_0| \leq R_0 \}$. Then f can be represented by the Laurent series with center at z_0

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

in this ring. The series converges in some domain $\{ r < |z - z_0| < R \}$ with $r \leq r_0$ and $R \geq R_0$.

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad b_n = \frac{1}{2\pi i} \oint_C f(\zeta)(\zeta - z_0)^{n-1} d\zeta,$$

where C is any closed curve in D that encloses z_0.
Example

Example

\[f(z) = \frac{1}{1-z}, \; z_0 = 0 \]

1. This function is analytic in the disc \(|z| < 1 \) and has the Taylor series expansion

\[f(z) = 1 + z + z^2 + \ldots = \sum_{n=0}^{\infty} z^n \]

2. It is also analytic in the domain \(|z| > 1 \) and has the Laurent series expansion in that domain. We write

\[f(z) = \frac{1}{1-z} = -\frac{1}{z(1-z^{-1})} = -z^{-1}(1+z^{-1}+\ldots) = \sum_{n=1}^{\infty} -\frac{1}{z^n} \]
More examples

- $z^{-2}e^z = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{z^n}{(n+2)!}$ for $|z| > 0$

- $e^{1/z} = 1 + \sum_{n=1}^{\infty} \frac{1}{n!z^n}$ for $|z| > 0$

- $f(z) = \frac{1}{(z + 1)(z + 2)} = \frac{1}{z + 1} - \frac{1}{z + 2}$

It has Taylor series expansion in $\{|z| < 1\}$, a Laurent series expansion in $\{1 < |z| < 2\}$, and another Laurent series expansion in $\{|z| > 2\}$.
Singular points

Definition

We say that a function f has an isolated singularity at some point z_0 if f is analytic in $\{0 < |z - z_0| < r\}$ for some $r > 0$ but not analytic at z_0.

If f has an isolated singularity at z_0 then it has Laurent series expansion in $0 < |z - z_0| < r$ which contains negative powers

$$f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

The second series is called the principle part of the Laurent series.

If the principle part is finite $\frac{b_1}{(z-z_0)} + \ldots + \frac{b_m}{(z-z_0)^m}$ with $b_m \neq 0$ then we say that f has a pole at z_0 of order m. If the principal part is not finite, we say that z_0 is an essential singularity of f.
If \(f(z) \) is analytic in \(|z - z_0| < r \) and \(f \) has a zero of order \(d \) at \(z_0 \) then \(1/f \) has a pole of order \(d \) at zero

\[
f(z) = (z - z_0)^d g(z)
\]

\[
\frac{1}{f(z)} = (z - z_0)^{-d} h(z) = \sum \frac{h(z_0)}{(z - z_0)^d} + \frac{h'(z_0)}{(z - z_0)^{d-1}} + \ldots
\]

where \(h(z) = 1/g(z) \) is analytic in some disk centered at \(z_0 \) and \(h(z_0) \neq 0 \).

If \(f \) has a pole at \(z_0 \) then \(|f(z)| \to \infty \) as \(z \to z_0 \).
Example: $f(z) = \sin \frac{1}{z}$ has essential singularity at the origin.

$$f(z) = \frac{1}{z} - \frac{1}{6z^3} + \frac{1}{5!z^5} - \ldots$$

Theorem (Picard)

*Suppose that f has an essential singularity at z_0. Then there exists a complex number c_0 such that for any $c \neq c_0$ the equation $f(z) = c$ has solutions in each disk centered at z_0.***
Behavior near a point

Suppose that $f(z)$ is analytic in $0 < |z - z_0| < r$ and $f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$ Then the following situations may occur:

1. $f(z)$ is bounded in $0 < |z - z_0| < r_0$ for some r_0. Then all $b_n = 0$ and we can extend f to an analytic function in $|z - z_0| < r$ by defining $f(z_0) = a_0$. We say that f has a removable singularity at z_0.

2. $|f(z)| \to \infty$ as $z \to z_0$. Then only finitely many of b_n are non-zeros and f has a pole at z_0.

3. $f(z)$ is unbounded but $|f| \not\to \infty$ then the principal part of the Laurent series has infinitely many non-zero terms and f has an essential singularity at z_0.