15.3 Functions given by power series.
15.4 Taylor series.

Eugenia Malinnikova, NTNU

October 31 2016
We will study functions represented by power series

\[f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \]

\(z_0 \) - center of the power series.

- The series converges in a disk centered at \(z_0 \),
 \(\{z : |z - z_0| < R\} \), \(0 \leq R \leq +\infty \) (this disk may degenerate to a single point \(z_0 \) or be the whole plane)

- The series diverges outside the closed disk, i.e. it diverges when \(|z - z_0| > R \). We don’t know the behavior on the circle \(\{z : |z - z_0| = R\} \), it depends on the coefficients.

- Formula for the radius of convergence is
 \[R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} \] if the limit exists,
Examples

1. $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ converges everywhere, $R = \infty$, as for real numbers we have $\sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$.

2. $\sum_{n=0}^{\infty} z^n$ converges when $|z| < 1$ to the sum $\frac{1}{1-z}$ and diverges when $|z| \geq 1$, $R = 1$.

3. $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges when $|z| \leq 1$ and diverges when $|z| > 1$, $R = 1$.

4. $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges when $|z| < 1$ and diverges when $|z| > 1$, $R = 1$; when $z = 1$ the series diverges, when $z = -1$ it converges. (What happens for other z on the unit circle?)

5. $\sum_{n=0}^{\infty} n!z^n$ diverges when $z \neq 0$, $R = 0$ (use the formula for R).

6. $\sum_{n=0}^{\infty} 2^n(z + i)^{2n}$ converges when $|z + i| < 1/\sqrt{2}$, $R = 1/\sqrt{2}$.

7. $\sum_{n=0}^{\infty} n(z - 1)^n$ converges when $|z - 1| < 1$, $R = 1$.
Let \(\sum_{n=0}^{\infty} a_n(z - z_0)^n \) be a power series with positive radius of convergence \(R \). Then for each \(z : |z - z_0| < R \) the sum

\[
f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n
\]

is defined. We say that \(f \) is represented by the power series.

Theorem

If \(f \) is represented by a power series in some disk \(\{ z : |z - z_0| < R \} \) with \(R > 0 \) then \(f \) is continuous at \(z_0 \).
Uniqueness of power series and operation

Theorem

Suppose that \(f(z) \) is represented by two series \(\sum a_n(z - z_0)^n \) and \(\sum b_n(z - z_0)^n \) in some disk centered at \(z_0 \). Then these series are equal, \(a_n = b_n \).

Let \(f(z) = \sum a_n(z - z_0)^n \) and \(g(z) = \sum b_n(z - z_0)^n \) and both radii of convergence are \(\geq R \). Then

- The series \(\sum_n(a_n + b_n)(z - z_0)^n \) converges in \(\{ |z - z_0| < R \} \) to \(f(z) + g(z) \)
- For \(\{ z : |z - z_0| < R \} \) the product \(f(z)g(z) \) is represented by the series

\[
a_0b_0 + (a_0b_1 + b_0a_1)(z-z_0) + (a_0b_2 + a_1b_1 + a_2b_0)(z-z_0)^2 + \ldots = \sum_{n=0}^{\infty} (a_0b_n + a_1b_{n-1} + \ldots + a_nb_0)z^n
\]
Consider the following power series

1. $\sum_{n=0}^{\infty} a_n (z - z_0)^n$
2. $\sum_{n=0}^{\infty} na_n (z - z_0)^{n-1}$
3. $\sum_{n=1}^{\infty} \frac{a_n}{n+1} (z - z_0)^{n+1}$

These series has the same radius of convergence. The second one is obtained from the first by term-wise differentiation. The third is the term-wise integration of the first.

Theorem

If $f(z)$ is represented by a power series $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ with a positive radius of convergence R, then $f(z)$ is analytic in the open disk $\{z : |z - z_0| < R\}$ and $f'(z)$ is represented by the series $\sum_{n=1}^{\infty} na_n (z - z_0)^{n-1}$.
Term-wise integration

Theorem
If $f(z)$ is represented by a power series $f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n$ with a positive radius of convergence R, then the anti-derivative $F(z)$ is represented by the series $C + \sum_{n=0}^{\infty} \frac{a_n}{n+1}(z - z_0)^{n+1}$.

Example
If $f(z) = \sum_{0}^{\infty} z^n = \frac{1}{1-z}$ then

$$\log(1 - z) = - \sum_{n=1}^{\infty} \frac{z^n}{n}, \quad |z| < 1$$
Examples

1. \(e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \) and \((e^z)' = \sum_{n=1}^{\infty} \frac{nz^{n-1}}{n!} = e^z \).

2. \((1 - z)^{-1} = \sum_{n=0}^{\infty} z^n \) and \((1 - z)^{-2} = \sum_{n=1}^{\infty} nz^n \).

3. \(\sum_{n=1}^{\infty} \frac{(z-i)^n}{n3^n} \) converges to an analytic function \(f \) in \(|z - i| < 3\) and \(f'(z) = \sum_{n=1}^{\infty} \frac{(z-i)^{n-1}}{3^n} = \frac{1}{3(1-(z-i)/3)} = \frac{3}{3+i-z} \). Then

\[
 f(z) = -3 \ln(z - 3 + i)
\]

when \(|z - i| < 3\)

4. \(\sum_{n=0}^{\infty} n(n-1)(z-\pi i)^n \), the radius of convergence is \(R = 1 \) and

\[
 f(z) = \sum_{n=0}^{\infty} n(n-1)(z-\pi i)^n = (z-\pi i)^2 \sum_{n=0}^{\infty} n(n-1)(z-\pi i)^{n-2}
\]

\[
 = (z-\pi i)^2 \left(\sum_{n=0}^{\infty} (z-\pi i)^n \right)'' = (z-\pi i)^2 \left(\frac{1}{1+\pi i-z} \right)'' =
\]

\[
 = \frac{2(z-\pi i)^2}{(1+\pi i-z)^3}
\]
Power series: example

Geometric series: \(z \in \mathbb{C} \) and \(w_n = z^n \)

\[
\sum_{0}^{\infty} z^n = \begin{cases}
\frac{1}{1-z}, & |z| < 1, \\
diverges, & |z| \geq 1.
\end{cases}
\]

Expansion of the Cauchy kernel:
Fix \(z_0 \in \mathbb{C} \) and let \(\zeta, z \in \mathbb{C} \) be such that \(|z - z_0| < |\zeta - z_0| \). Then

\[
\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}
\]

We are going to use this formula for making expansions of analytic functions into power series!
$z_0 \in \mathbb{C}, \ R > 0, \ f(z) \text{ is analytic in } \{z : |z - z_0| < R\}.$

Cauchy representation + expansion of the Cauchy kernel \Rightarrow

\[
f(z) = \frac{1}{2i\pi} \int_{|\zeta - z_0| = R} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2i\pi} \int_{|\zeta - z_0| = R} f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta = \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2i\pi} \int_{|\zeta - z_0| = R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta
\]
Expansions of analytic functions into power series

\[f(z) = \frac{1}{2i\pi} \int_{|\zeta - z_0| = R} f(\zeta) \frac{d\zeta}{\zeta - z} = \frac{1}{2i\pi} \int_{|\zeta - z_0| = R} f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta = \frac{1}{2i\pi} \int_{|\zeta - z_0| = R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0)\]

\[= \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0).\]

We obtained Taylor series expansion for analytic function. It converges for all \(z \) such that \(|z - z_0| < R \).
Taylor’s formula with remainder

If f is analytic in a disk $\{|z - z_0| < R\}$ then f can be represented by a power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

in this disk and $a_n = \frac{f^{(n)}(z_0)}{n!}$. We call it the Taylor series of f.

Taking partial sums of the Taylor series we obtain polynomial approximation of an analytic function

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \ldots + \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) + R_n(z)$$

The remainder is given by the formula

$$R_n(z) = \frac{(z - z_0)^{n+1}}{2\pi i} \oint_{|\zeta - z_0| = R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}(\zeta - z)} d\zeta$$
Theorem

Let $f(z)$ be analytic in a domain D and z_0 be any point in D. There is precisely one Taylor series with center z_0 that represents $f(z)$. The disk of convergence for this series is the largest disk centered at z_0 where $f(z)$ is analytic.

Example

1. $f(z) = \frac{1}{1+z^2}$, $z_0 = 0$ the Taylor series converges for $|z| < 1$
2. $f(z) = (\cos z)^{-1}$, $z_0 = 0$ the Taylor series converges for $|z| < \pi/2$.

A power series with a nonzero radius of convergence is the Taylor series of its sum.