6.1 Laplace transform, introduction

Eugenia Malinnikova, NTNU

August 22, 2016
Laplace transform as an important engineering tool

In applications we have to handle discontinuous external forces (electrical switch, impulse). The mathematical approximation is *piecewise continuous functions*.

Definition
A function f is said to be piecewise continuous on an interval $[a, b]$ if this interval can be partitioned into a finite number of intervals such that on each small open interval f is continuous and f has finite one-sided limits on the ends of these sub-intervals.

Example
The Heaviside function

$$u_0(t) = \begin{cases}
0, & t < 0 \\
1, & t \geq 0
\end{cases} \quad u_c(t) = \begin{cases}
0, & t < c \\
1, & t \geq c
\end{cases}$$
Integration of piece-wise continuous functions and improper integrals

If f is a piece-wise continuous function on a finite interval $[a, b]$ then the integral $\int_a^b f(t)dt$ is defined as:

$$\int_a^b f(t)dt = \int_a^{t_1} f(t)dt + \int_{t_1}^{t_2} f(t)dt + ... + \int_{t_n}^b f(t)dt$$

it is the sum of integrals over sub-intervals on which f is continuous.

Now suppose that f is piece-wise continuous on $[a, A]$ for any $A > a$. Then we consider

$$\int_a^\infty f(t)dt = \lim_{A \to \infty} \int_a^A f(t)dt$$

if the limit exists (we say that the integral converges).
Examples and a comparison theorem

Example

Divergent integrals:

\[\int_0^\infty e^{at} \, dt, \quad a \geq 0, \quad \int_1^\infty t^p \, dt, \quad p \geq -1, \quad \int_0^\infty \sin t \, dt \]

Convergent integrals:

\[\int_0^\infty e^{at} \, dt, \quad a < 0, \quad \int_1^\infty t^p, \quad p < -1, \quad \int_0^\infty \frac{\sin t}{t} \, dt \]

Theorem

If \(\int_0^\infty g(t) \, dt \) converges and \(|f(t)| < g(t) \) then \(\int_0^\infty f(t) \, dt \) also converges.

If \(f(t) > g(t) > 0 \) and \(\int_0^\infty g(t) \, dt \) diverges then \(\int_0^\infty f(t) \, dt \) diverges.
Laplace transform: definition and existence

A special machine which changes one function into another.
Input: \(f(t), \ t > 0 \).
Output:

\[
F(s) = \mathcal{L}\{f\}(s) = \int_0^\infty f(t)e^{-st} \, dt
\]

Definition

If \(f \) is a piece-wise continuous function on each interval \([0, A]\) then

\[
F(s) = \mathcal{L}\{f\}(s) = \int_0^\infty f(t)e^{-st} \, dt = \lim_{A \to \infty} \int_0^A f(t)e^{-st} \, dt,
\]

if the limit exists.

Theorem

If \(|f(t)| < M e^{kt}\) (such \(f \) is called a function of exponential order), then \(\mathcal{L}\{f\}(s) \) exists for all \(s > k \).
First examples of the Laplace transform

Example 1 $f(t) = 1$

$$F(s) = \lim_{A \to \infty} \int_{0}^{A} e^{-st} \, dt = \lim_{A \to \infty} \frac{e^{-st}}{s} \bigg|^{A}_{0}$$

$$= \lim_{A \to \infty} \left(-\frac{e^{-sA}}{s} + \frac{1}{s} \right) = \frac{1}{s}, \quad s > 0.$$

Example 2 $f(t) = e^{at}$

$$F(s) = \int_{0}^{\infty} e^{at} e^{-st} \, dt = \int_{0}^{\infty} e^{-(s-a)t} \, dt = \frac{1}{s-a}, \quad s > a.$$
Further examples of the Laplace transform

The Laplace transforms of the following functions can be evaluated using the definition (and integration by parts sometimes)

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$F(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{s}$, $s > 0$</td>
</tr>
<tr>
<td>t^n</td>
<td>$\frac{n!}{s^{n+1}}$, $s > 0$</td>
</tr>
<tr>
<td>e^{at}</td>
<td>$\frac{1}{s-a}$, $s > a$</td>
</tr>
<tr>
<td>$\cos at$</td>
<td>$\frac{s}{s^2+a^2}$, $s > 0$</td>
</tr>
<tr>
<td>$\sin at$</td>
<td>$\frac{a}{s^2+a^2}$, $s > 0$</td>
</tr>
<tr>
<td>$u_c(t)$, $c > 0$</td>
<td>$\frac{e^{-cs}}{s}$, $s > 0$</td>
</tr>
</tbody>
</table>
Basic rules

- **Linearity**
 \[\mathcal{L}\{af + bg\} = a\mathcal{L}\{f\} + b\mathcal{L}\{g\} \]

- **First shift rule**
 \[\mathcal{L}\{e^{at}f(t)\}(s) = \mathcal{L}\{f\}(s - a) \]

- **Second shift rule** (see the next lecture for details)
 \[\mathcal{L}\{u_c(t)f(t - c)\}(s) = e^{-cs}\mathcal{L}\{f\}(s) \]

- **Derivatives** (see the next lecture)
 \[\mathcal{L}\{f'\} = s\mathcal{L}\{f\} - f(0), \quad \mathcal{L}\{f''\} = s^2\mathcal{L}\{f\} - sf(0) - f'(0), \]
 \[\mathcal{L}\{f^{(n)}\} = s^n\mathcal{L}\{f\} - s^{n-1}f(0) - s^{n-2}f'(0) - ... - f^{(n-1)}(0) \]
Consider an initial value problem for a linear ODE with constant coefficients

\[y^{(n)} + a_{n-1}y^{n-1} + \ldots + a_1y' + y = f \]

\[y(0) = K_0, \ y'(0) = K_1, \ldots, y^{(n-1)}(0) = K_{n-1} \]

It can be solved by the following procedure:

- apply the Laplace transform to obtain an algebraic equation on \(Y = \mathcal{L}\{y\} \)
- solve this equation and find \(Y \)
- find \(y \) such that \(\mathcal{L}\{y\} = Y \) (inverse Laplace transform)

The last step could be non-trivial.
Example 3, Laplace transform by definition

Find the Laplace transform of the function

\[f(t) = \begin{cases}
1, & 0 \leq t \leq 1 \\
t, & 1 \leq t < \infty
\end{cases} \]

We use the definition:

\[F(s) = \int_0^\infty f(t)e^{-st} \, dt = \int_0^1 e^{-st} \, dt + \int_1^\infty te^{-st} \, dt = F_1(s) + F_2(s) \]

where \(F_1(s) = -\frac{e^{-st}}{s} \bigg|_0^1 = 1/s - e^{-s}/s \) and

\[F_2(s) = \int_1^\infty t(-e^{-st}/s)' \, dt = -\frac{te^{-st}}{s} \bigg|_1^\infty + \int_1^\infty \frac{e^{-st}}{s} \, dt = \frac{e^{-s}}{s} + \frac{e^{-s}}{s^2} \]

Then

\[F(s) = \frac{1}{s} + \frac{e^{-s}}{s^2}, \quad s > 0 \]
Example 4, Laplace transform using the s-shift

Compute the Laplace transform of the function $e^{-3t} \cos 4t$ if we know that

$$\mathcal{L}(\cos bt)(s) = \frac{s}{s^2 + b^2}.$$

We have

$$\mathcal{L}(e^{-3t} \cos(4t))(s) = \mathcal{L}(\cos(4t))(s - (-3)) =$$

$$= \frac{s + 3}{(s + 3)^2 + 4^2} = \frac{s + 3}{s^2 + 6s + 25}.$$
Example 5, Inverse Laplace transform

Find the inverse Laplace transform of the function

\[F(s) = \frac{2s}{s^2 - 2s - 3} \]

We will use the linearity property and table functions. We want to simplify the function \(F(s) \) using the partial fraction decomposition:

\[F(s) = \frac{2s}{s^2 - 2s - 3} = \frac{a}{s - 3} + \frac{b}{s + 1} \]

Or \(2s = a(s - 1) + b(s - 3) \) and \(a = 3/2, b = 1/2 \).

\[F(s) = \frac{3}{2(s - 3)} - \frac{1}{2(s + 1)} \]

Then \(f(t) = \mathcal{L}^{-1}(F)(t) = \frac{3}{2} e^{3t} - \frac{1}{2} e^{t} \).