12.3-4 Wave equation, D’Alembert solutions, classification
// 12.7 Heat equation on the line

Eugenia Malinnikova, NTNU

October 3, 2016
We model small vibrations of an elastic homogeneous string, assume that the string performs small motion in vertical direction only.

Physical assumptions:

- The string is homogeneous and elastic.
- The gravitational force can be neglected.
- Each part of the string moves only vertically.

We are looking for a function \(u(x, t) \) that describes the motion. The equation is

\[
\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad c^2 = \frac{T}{\rho}
\]

where \(T \) is the tension of the string and \(\rho \) is the density. The equation is called one-dimensional wave-equation.
Separation of variables

As before, we are looking at solutions of the form
\(u(x, t) = F(x)G(t) \). And we get coupled equations for \(F \) and \(G \):

\[
\frac{F''}{F} = \frac{G''}{c^2 G} = k
\]

Suppose that two ends of the string are fixed,
\(u(0, t) = u(L, t) = 0 \), then we want to find solutions with
\(F(0) = F(L) = 0 \). As earlier we obtain

\[
F_n(x) = \sin \left(\frac{n\pi x}{L} \right), \quad n \text{ is integer,} \quad k_n = -\left(\frac{n\pi}{L} \right)^2 = -\rho_n^2
\]

Then for \(G \) we obtain

\[
G_n(t) = A_n \cos cp_n t + B_n \sin cp_n t
\]

When \(n = 1 \) we obtain the fundamental mode of the string,
\(\omega_1 = cp_1/2\pi = \sqrt{T/\rho}/2L \) is the corresponding fundamental frequency.

Eugenia Malinnikova, NTNU
To describe the motion of the string we need to know its initial position \(f(x) = u(x, 0) \) and initial velocity \(g(x) = u_t(x, 0) \).

We look for a solution of the form

\[
 u(x, t) = \sum_{n=1}^{\infty} (A_n \cos cp_n t + B_n \sin cp_n t) \sin p_n x
\]

The initial conditions give

\[
 f(x) = \sum_{n=1}^{\infty} A_n \sin p_n x, \quad g(x) = \sum_{n=1}^{\infty} cp_n B_n \sin p_n x
\]
Consider the wave equation $u_{tt} = c^2 u_{xx}$ and introduce new variables $x = x + ct$ and $w = x - ct$. Then

$$u_x = u_v v_x + u_w w_x = u_v + u_w, \quad u_{xx} = u_{vv} + 2u_{vw} + u_{ww}$$

$$u_y = u_v v_y + u_w w_y = c(u_v - u_w), \quad u_{yy} = c^2(u_{vv} - 2u_{vw} + u_{ww})$$

In the new variables the equation is $u_{vw} = 0!$

Integrating first with respect to v and then with respect to w we get

$$u(x, y) = \phi(v) + \psi(w) = \phi(x + ct) + \psi(x - ct),$$

where ϕ and ψ are arbitrary functions.
To determine ϕ and ψ we should specify the initial conditions $u(x, 0) = f(x)$ and $u_t(x, 0) = g(x)$. Then $\phi + \psi = f$ and $c(\phi' + \psi') = g$. Then

$$\phi(x) = \frac{1}{2} f(x) + \frac{1}{2c} \int_{x_0}^{x} g(s) ds + C$$

$$\psi(x) = \frac{1}{2} f(x) - \frac{1}{2c} \int_{x_0}^{x} g(s) ds - C$$

Then

$$u(x, t) = \frac{1}{2} (f(x + ct) + f(x - ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$$
Second order linear PDEs of two variables

The principle part (terms that contain only highest order derivatives) of a second order PDE of two variables has the following form

\[L(u) = Au_{xx} + 2Bu_{xy} + Cu_{yy} \]

We consider constant coefficient case \((A, B, C \text{ are constants})\). We distinguish three types of equations

<table>
<thead>
<tr>
<th>Type</th>
<th>Condition</th>
<th>Example</th>
<th>Normal form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperbolic</td>
<td>(AC - B^2 < 0)</td>
<td>Wave: (u_{tt} - c^2 u_{xx})</td>
<td>(u_{vw})</td>
</tr>
<tr>
<td>Parabolic</td>
<td>(AC - B^2 = 0)</td>
<td>Heat: (u_{xx})</td>
<td>(u_{ww})</td>
</tr>
<tr>
<td>Elliptic</td>
<td>(AC - B^2 > 0)</td>
<td>Laplace: (u_{xx} + u_{yy})</td>
<td>(u_{vv} + u_{ww})</td>
</tr>
</tbody>
</table>
To find the new variables v, w in which the equation has normal form we take $v = y + \lambda_1 x, \ w = y + \lambda_2 x$, where

- If the equation is hyperbolic, then $\lambda_{1,2}$ are the roots of $A\lambda^2 + 2B\lambda + C = 0$.
- If the equation is parabolic, then λ_1 is the root of $A\lambda^2 + 2B\lambda + C = 0$ and λ_2 is arbitrary.
- If the equation is elliptic, then $\lambda_{1,2}$ are the roots of the equation $A\lambda^2 + 2B\lambda + (2B^2/A - C) = 0$.
Heat equation on the line

Now we consider the equation $u_t = c^2 u_{xx}$ for $-\infty < x < \infty$ and $t \geq 0$ with initial condition $u(x, 0) = f(x)$. We assume that $f(x) \to 0$ as $x \to \pm\infty$ fast enough. Let us further suppose that $u(x, t)$ decreases fast when t is fixed and $x \to \pm\infty$ such that for each fixed t we can compute the Fourier transform $\hat{u}(w, t)$ of $u(x, t)$ with respect to x. Then

$$\hat{u}_t (w, t) = -c^2 w^2 \hat{u}(w, t) \Rightarrow \hat{u}(w, t) = C(w) e^{-c^2 w^2 t}$$

We find $C(w)$ from the initial condition, $C(w) = \hat{u}(w, 0) = \hat{f}(w)$ and using the inversion formula for the Fourier transform we get

$$u(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{-c^2 w^2 t} e^{iwx} dw =$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int f(y) e^{i w (x - y)} e^{-c^2 w^2 t} dy dw = \frac{1}{2c\sqrt{\pi} t} \int_{-\infty}^{\infty} f(y) e^{-\frac{(x-y)^2}{4c^2 t}} dy$$
The last formula has the following form

\[u(x, t) = f(y) \ast k(y, t) \]

where

\[k(y, t) = \frac{1}{2c\sqrt{\pi t}} e^{-y^2/(4c^2 t)} \]

it is called the heat kernel (in dimension one).